首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bi1?x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ~200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1?x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal–semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1?x Sb x thin films with thicknesses in the range d = 250–300 nm prepared by thermal evaporation of Bi1?x Sb x crystals (x = 0–0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1?x Sb x crystal composition are reproduced in thin films.  相似文献   

2.
Single crystals of the ternary system Bi2−x Tl x Se3 (nominally x = 0.0 to 0.1) were prepared using the Bridgman technique. Samples with varying content of Tl were characterized by measurement of lattice parameters, electrical conductivity σ ⊥c, Hall coefficient R H(Bc), and Seebeck coefficient ST⊥c). The measurements indicate that incorporation of Tl into Bi2Se3 lowers the concentration of free electrons and enhances their mobility. This effect is explained within the framework of the point defects in the crystal lattice, with formation of substitutional defects of thallium in place of bismuth (TlBi) and a decrease in the concentration of selenium vacancies (VSe + 2 V_{\rm{Se}}^{ + 2} ). The temperature dependence of the power factor σS 2 of the samples is also discussed. As a consequence of the thallium doping we observe a significant increase of the power factor compared with the parent Bi2Se3.  相似文献   

3.
n-Type CoSb2.875−x Ge0.125Te x (x = 0.125 to 0.275) compounds with different Te contents have been synthesized by a melt–quench–anneal–spark plasma sintering method, and the effects of Te content on the structure and thermoelectric properties have been investigated. The results show that all specimens exhibited n-type conduction characteristics. The solubility limit of Te in CoSb2.875−x Ge0.125Te x is found to be x = 0.25. The solubility of Te in CoSb3 is increased through charge compensation of the element Ge. The room-temperature carrier concentration N p of CoSb2.875−x Ge0.125Te x skutterudites increases with increasing Te content, and the compounds possess high power factors. The maximum power factor of 3.89 × 10−3 W m−1 K−2 was obtained at 720 K for the CoSb2.625Ge0.125Te0.25 compound. The thermal conductivity decreases dramatically with increasing Te content due to strong point defect scattering. The maximum value of the thermoelectric figure of merit ZT = 1.03 was obtained at 800 K for CoSb2.625Ge0.125Te0.25, benefiting from a lower thermal conductivity and a higher power factor. The figure of merit is competitive with values reported for single-filled skutterudites.  相似文献   

4.
Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K.  相似文献   

5.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

6.
Cathodoluminescence from GaN x As1?x layers (0 ≤ x ≤ 0.03) was measured at photon energies ranging from the intrinsic absorption edge to 3 eV at room temperature. An additional emission band was visible in the visible range of the cathodoluminescence spectra. The intensity of this band is two orders of magnitude lower than the edge-emission intensity. The photon energy corresponding to the peak of this band and its FWHM are virtually independent of x and equal to ~2.1 and 0.6–0.7 eV, respectively. This emission is related to indirect optical transitions of electrons from the L 6c and Δ conduction-band minimums to the Γ15 valence-band maximum.  相似文献   

7.
The search for alternative energy sources is presently at the forefront of applied research. In this context, thermoelectricity for direct energy conversion from thermal to electrical energy plays an important role. This paper is concerned with the development of highly efficient p-type Ge x Pb1−x Te alloys for thermoelectric applications, using spark plasma sintering. The carrier concentration of GeTe was varied by alloying of PbTe and/or by Bi2Te3 doping. Very high ZT values up to ~1.8 at 500°C were obtained by doping Pb0.13Ge0.87Te with 3 mol% Bi2Te3.  相似文献   

8.
A thin film of Ge-rich Ge x Si1−x on a (100) Si substrate was synthesized by ion implantation followed by thermal oxidation. Proper oxidation conditions were maintained to produce a film with Ge atomic content of more than 95%, confirmed by both high-resolution Rutherford backscattering spectrometry (RBS) and Raman spectroscopy. The strain state of the Ge-rich thin film is a function of its thickness, as determined by the implantation fluence. The use of Raman spectroscopy to monitor the composition and strain state of the Ge thin film formed is discussed.  相似文献   

9.
Polycrystalline samples of In4(Se1−x Te x )3 were synthesized by using a melting–quenching–annealing process. The thermoelectric performance of the samples was evaluated by measuring the transport properties from 290 K to 650 K after sintering using the spark plasma sintering (SPS) technique. The results indicate that Te substitution can effectively reduce the thermal conductivity while maintaining good electrical transport properties. In4Te3 shows the lowest thermal conductivity of all compositions tested.  相似文献   

10.
Glasses containing nanoparticles of semiconductor CuInSe2xTe2(1?x) compounds (0≤x≤1) were fabricated by high-temperature melting of the mixtures of the glass-forming components and the corresponding compounds. Particles of average size 15–30 nm, whose characteristics were similar for compounds with different x, were formed. Optical absorption of the glasses near the fundamental absorption edge in the near-infrared and visible regions of the spectrum was studied, as well as the effect of additional heat treatment of glasses on their optical properties. The nature of the observed changes in the spectra with varying compound composition (the [Se]/[Te] ratio) was related to the possible transformations of the crystalline structure of nanoparticles.  相似文献   

11.
Mg2Si1−x Ge x compounds were prepared from pure elements by melting in tantalum crucibles. The reaction was conducted under an inert gas in a special laboratory setup. Samples for thermoelectric measurements were formed by hot pressing. Structure and phase composition of the obtained materials were investigated by x-ray diffraction (XRD). Morphology and chemical composition were examined by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS), respectively. Thermoelectric properties, i.e., the Seebeck coefficient, the electrical conductivity, and the thermal conductivity, were measured in the temperature range of 500 K to 900 K. The effect of Bi and Ag doping on the thermoelectric performance of Mg-Si-Ge ternary compounds was investigated. The electronic structures of binary compounds were calculated using the Korringa–Kohn–Rostoker (KKR) method. The effects of disorder, including Ge substitution and Bi or Ag doping, were accounted for in the KKR method with coherent potential approximation calculations. The thermoelectric properties of doped Mg2Si1−x Ge x are discussed with reference to computed density of states as well as the complex energy band structure.  相似文献   

12.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

13.
In the present paper, the dielectric parameters such as the dielectric constant ε′(ω), dielectric loss ε″(ω) and alternating current (ac) conductivity have been investigated for bulk amorphous chalcogenide Se80?x Te20Pb x (x = 0, 1 and 2) glasses in the frequency range 10 Hz to 500 kHz and within the temperature range from 300 K to 320 K. Dielectric constant ε′(ω) and dielectric loss ε″(ω) are found to be highly frequency (ω) and temperature dependent, and this behavior is interpreted on the basis of Guintini’s theory of dielectric dispersion. The ac conductivity (σ ac) is found to be temperature independent and obey the power law ω s , where s < 1 and decreases as temperature rises. The obtained results are discussed in terms of the correlation barrier hopping model proposed by Elliot. The composition dependence of the dielectric constant, dielectric loss and ac conductivity are also discussed and reported here.  相似文献   

14.
Coarse-grained crystals of AgGaSe2 and AgInSe2 ternary compounds and their alloys are grown by planar crystallization of the melts. For the crystals produced in this way, the transmittance spectra near the fundamental absorption edge are studied. From the experimental spectra, the band gap (E g) and its variation with composition are determined. It is established that E g is a nonlinear function of the composition parameter x. The dependence E g (x) is calculated theoretically in the context of the Van Vechten-Bergstresser model and Hill-Richardson pseudopotential model.  相似文献   

15.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

16.
The transmittance spectra of (CuInSe2)1 − x (2MnSe) x alloy crystals grown by the Bridgman method are studied in the temperature range from 10 to 300 K. For these materials, the band gap and its temperature dependence are determined. It is shown that the band gap decreases with increasing temperature. The dependences of the band gap of the (CuInSe2)1 − x (2MnSe) x alloys on the composition parameter x are plotted.  相似文献   

17.
The magnetoresistance of a lightly doped p-Ge1?xSix alloy is studied in the range of compositions x = 1–2 at %. The results are compared with the available data for lightly doped p-Ge. The studies have been carried out using ESR measurements at a frequency of 10 GHz in the temperature range 10–120 K. It is established that micrononuniformity in the distribution of Si in the Ge lattice (Si clusters) suppresses the interference part of the anomalous magnetoresistance and, in addition, results in an averaging of the effects of light and heavy holes. This observation suggests a sharp decrease in the inelastic scattering time in the case of a Ge1?xSix solid solution as compared to that of Ge.  相似文献   

18.
We present electronic structure calculations of ordered Mg2Si as well as disordered Mg2Si1−x Sb x and Mg2−δ Si1−x Sb x systems, carried out by the Korringa–Kohn–Rostoker method with the coherent potential approximation (KKR-CPA). The computed densities of states (DOS) clearly show that a vacancy on the Mg site behaves as a double hole donor. Such electronic structure behavior together with n-type doping by antimony leads to electron–hole compensation. Consequently, the semiconductor–metal crossover expected in Mg2Si1−x Sb x due to the Fermi level shift into conduction states is not observed when important vacancy defects appear on the Mg site. Conversely, the Fermi level remains inside the energy gap if the antimony concentration is twice the vacancy concentration. The possible origin of vacancy formation in Mg2Si1−x Sb x is discussed based on the formation energy calculations as well as DOS features. Our KKR-CPA results well support recent electron transport properties measurements.  相似文献   

19.
Optical studies of unstrained narrow-gap Al x In1 − x Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0–0.52 and monitored by electron probe microanalysis. The band gap E g is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E g (x) for the Al x In1 − x Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.  相似文献   

20.
The temperature dependences of the electrical conductivity σ(T), the Hall coefficient R(T), and the thermoelectric coefficient α(T) are investigated in TlIn1–xYbxTe2 (0 < x < 0.10) solid solutions at 80–1000К. From the kinetic parameters, the effective masses of electrons and holes are determined. The obtained experimental data on σ(T) and α(T) are interpreted within the context of a model with one and two types of charge carriers. It is established that, since x = 0.05, the TlIn1–xYbxTe2 solid solutions belong to the class of narrow-gap semiconductors that have high matrix elements of interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号