首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic series of model methanol synthesis catalysts was prepared by sequential impregnation of a mesoporous silica material (5 nm average pore size) with an organometallic ZnO precursor which is liquid at room temperature, followed by the infiltration with an aqueous Cu nitrate solution. These catalysts, which contained 14–20 wt.% Cu and 1–5 wt.% Zn, were characterized by N2O reactive chemisorption, by EXAFS and by measuring their methanol synthesis activities. It was observed that the formation of confined, nanocrystalline ZnO prior to copper infiltration is of major importance for the development of catalyst activity. Severe reduction of properly prepared catalysts (10% CO/H2, 673 K, 15 min) leads to the emergence of a new feature in the ZnK EXAFS spectrum which was assigned to a Cu neighbour by combined evidence from the ZnK EXAFS and XANES regions. The zinc oxide component was partially reduced as well, but Zn(0) was not formed to any significant extent. Catalysts which developed this Cu–Zn2+ interaction under severe reduction were superior in terms of methanol synthesis rate per m2 Cu surface area to a sample which did not exhibit this feature.  相似文献   

2.
The impact of preparation methods on the structure and catalytic behavior of Cu/ZnO/Al2O3 catalysts for H2 production from steam reforming of methanol (SRM) has been reported. The results show that the nanostructured Cu/ZnO/Al2O3 catalyst obtained by a novel gel-coprecipitation of oxalate precursors has a high specific surface area and high component dispersion, exhibiting much higher activity in the SRM reaction as compared to the catalysts prepared by conventional coprecipitation techniques. It is suggested that the superior catalytic performance of the oxalate gel-coprecipitation-derived Cu/ZnO/Al2O3 catalyst could be attributed to the generation of “catalytically active” copper material with a much higher metallic copper specific surface as well as a stronger Cu–Zn interaction due to an easier incorporation of zinc species into CuC2O4 · x H2O precursors as a consequence of isomorphous substitution between copper and zinc in the oxalate gel-precursors.  相似文献   

3.
A multi‐functional flow set‐up was developed for the rate‐ and temperature‐controlled reduction of copper catalysts, their application in high‐pressure methanol synthesis and the determination of the copper surface area by N2O frontal chromatography. The influence of constant‐rate reduction on the catalytic properties of a ternary Cu/ZnO/Al2O3 catalyst was investigated. The temperature during the constant‐rate reduction was found to decrease, indicating autocatalytic kinetics, but no significant catalytic effect of the milder reduction conditions was observed compared with a slow linear heating ramp.  相似文献   

4.
Methanol synthesis over Cu/ZnO catalysts prepared by ball milling   总被引:1,自引:0,他引:1  
Cu/ZnO catalysts (with a Cu/Zn atomic ratio of 30/70) have been prepared by high intensity mechanical mixing of copper and zinc oxide powder in air and under vacuum. During milling in vacuum gradual amorphisation of the constituents occurs, as evidenced by broadening of the Cu0 and ZnO diffraction peaks in XRD, but the two original phases remain. The result of such treatment is a catalyst with low BET area and low Cu metal surface area. Consequently, the activity of the vacuum milled samples in batch methanol production from synthesis gas (CO/CO2/H2=20/5/75) at 50 bar and 250°C is low. Milling in air leads to oxidation of the copper metal phase and much higher BET surface area and, after reduction, Cu metal surface area. Prolonged milling times in air result in more than 90% Cu2+ formation as evidenced by TPR. Activity in methanol synthesis for the air milled samples is comparable to a conventional Cu/ZnO catalyst prepared by coprecipitation. It is concluded that high intensity ball milling at ambient conditions is a promising method to prepare mixed oxide catalysts or catalyst precursors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

6.
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism.  相似文献   

7.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

8.
Reduced Cu/ZnO catalyst was synthesized through solid phase grinding of the mixture of oxalic acid, copper nitrate and zinc nitrate, followed by subsequent calcination in N2 atmosphere without further H2 reduction. The catalysts were characterized by various techniques, such as XRD, TG-DTA, TPR and N2O chemisorption. Characterization results suggested that during the calcination in N2, as-ground precursor (oxalate complexes) decomposed to CuO and ZnO, releasing considerable amount of CO, which could be used for in situ reduction of CuO to Cuo. The in situ reduced O/I-Cu/ZnO catalyst was evaluated in CO2 hydrogenation to methanol, which exhibited superior catalytic performance to its counterpart O/H-Cu/ZnO catalyst obtained through conventional H2 reduction. The decomposition of precursor and reduction of CuO happened simultaneously during the calcination in N2, preventing the growth of active Cu0 species and aggregation of catalyst particles, which was inevitable during conventional H2 reduction process. This method is simple and solvent-free, opening a new route to prepare metallic catalysts without further reduction.  相似文献   

9.
A new synthesis method of low-temperature methanol proceeded on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 using 2-butanol as promoters. The Cu/ZnO/Al2O3 catalysts were prepared by co-impregnation of r-Al2O3 with an aqueous solution of copper nitrate and zinc nitrate. The total carbon turnover frequency (TOF), the yield and selectivity of methanol were the highest by using the Cu/ZnO/Al2O3 catalyst with copper loading of 5% and the Zn/Cu molar ratio of 1/1, which precursor were not calcined, and reduced at 493 K. The activity of the catalysts increased due to the presence of the CuO/ZnO phase in the oxidized form of impregnation Cu/ZnO/Al2O3 catalysts. The active sites of the Cu/ZnO/Al2O3 catalyst for methanol synthesis are not only metallic Cu but also special sites such as the Cu–Zn site, i.e. metallic Cu and the Cu–Zn site work cooperatively to catalyze the methanol synthesis reaction.  相似文献   

10.
《Journal of Catalysis》2005,229(1):136-143
The structure of Cu/SiO2 and Cu/ZnO/SiO2 catalysts was studied after reduction at 450–1300 K. The influence of the ZnO promoter on the exposed Cu surface area and metal cluster size was determined by N2O chemisorption and X-ray diffraction. After reduction at 450 K, the metal surface area amounted to 9 m2/gcat for both catalysts. Oxygen uptake during N2O chemisorption increased significantly up to reduction temperatures of 800–900 K. This increase was most prominent for the ZnO-promoted catalyst, although no oxygen uptake was observed for a similarly treated ZnO/SiO2 sample. The behaviour of the promoted catalyst can be explained by formation of Zn0, surface alloying, and segregation of ZnOx species on top of Cu clusters. The high thermostability of the catalysts was confirmed by in situ XRD measurements. The Cu crystallite size in both catalysts was about 4 nm, and did not increase when the reduction temperature was raised to 1100 K for 1 h.  相似文献   

11.
The CuO dispersed on ZnCr2O4 catalysts derived from Cu–Zn–Cr hydrotalcite like layered double hydroxide precursors with varying Zn/Cr ratios have been synthesized, characterized by BET—Surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), electron spin resonance (ESR), N2O titrations and the activities were evaluated for single step dimethyl ether (STD) synthesis from syngas. It is observed that the copper species were in highly dispersed state over Cu–ZnO–Cr2O3 at high Zn/Cr ratios while the copper cluster were present at low Zn/Cr ratios. The ESR analysis revealed signals due to isolated Cu2+ at high Zn/Cr ratios and clustered Cu2+ at low Zn/Cr ratio in fresh catalysts and only Cr3+ species in used catalysts. The TPR results indicated that the reduction peak shifted to high temperatures with an increase in chromium content due to large copper crystallites, which was supported by XRD analysis. The conversion of syngas to DME was well correlated with the copper metal surface areas, indicating that STD synthesis can be controlled by methanol synthesis rate.  相似文献   

12.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

13.
Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol   总被引:1,自引:0,他引:1  
The reducibility of ZnO was investigated in the temperature range of 523–623 K in a stream of a reducing agent such as H2, CO, and methanol. ZnO was reduced only in the presence of copper in the vicinity of ZnO with CO and methanol, but it was not reduced with H2. Methanol was a stronger reducing agent in the reduction of ZnO than CO, while CO was stronger in the reduction of CuO than methanol. Two types of brass were observed resulting from the reduction of ZnO in the Cu/ZnO sample by XRD. Zanghengite brass started to be formed at 573 K in addition to α-brass which was observed at the temperature above 523 K in the temperature range of 523–623 K during the ZnO reduction with methanol. The carbon monoxide chemisorption showed that the copper surface areas decreased during the reduction of ZnO with methanol. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The synthesis of methanol on a Cu(100) single crystal surface was studied between 500–550 K and at pressures between 44–102 kPa using a gas mixture of CO2/CO/H2 = 1/2/12. The specific reaction rates found for methanol synthesis were approximately an order of magnitude lower than those rates previously reported for silica supported, Cu-based catalysts. Furthermore the rates observed for the Cu(100) catalyst are estimated to be several orders of magnitude smaller than those rates found for ZnO supported Cu catalysts at comparable reaction conditions. The very low concentration of ionic copper species on the surface is thought to be responsible for the low activity of the Cu(100) catalyst.  相似文献   

15.
The effect of ZnO/SiO2 in a physical mixture of Cu/SiO2 and ZnO/SiO2 on methanol synthesis from CO2 and H2 was studied to clarify the role of ZnO in Cu/ZnO-based catalysts. An active Cu/SiO2 was prepared by the following procedure: the Cu/SiO2 and ZnO/SiO2 catalysts with a different SiO2 particle size were mixed and reduced with H2 at 523-723 K, and the Cu/SiO2 was then separated from the mixture using a sieve. The methanol synthesis activity of the Cu/SiO2 catalyst increased with the reduction temperature and was in fairly good agreement with that previously obtained for the physical mixture of Cu/SiO2 and ZnO/SiO2. These results indicated that the active site for methanol synthesis was created on the Cu/SiO2 upon reduction of the physical mixture with H2. It was also found that ZnO itself had no promotional effect on the methanol synthesis activity except for the role of ZnO to create the active site. The active site created on the Cu/SiO2 catalyst was found not to promote the formation of formate from CO2 and H2 on the Cu surface based on in situ FT-IR measurements. A special formate species unstable at 523 K with an OCO asymmetric peak at ~1585 cm-1 was considered to be adsorbed on the active site. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
《Applied catalysis》1988,36(1):131-150
Catalysts containing copper and ZnO in various combinations have been prepared, the copper surface areas have been measured by nitrous oxide frontal chromatography, and the activities in the reaction of CO/CO2/H2 and CO/H2 mixtures to methanol have been determined at 250°C and 10 bar pressure. The results show that there is a strong synergy between copper and ZnO with the area specific rate of Cu/ZnO catalysts being about one order of magnitude larger than that of a Cu/SiO2 catalyst. The synergy between copper and ZnO is observed both in the presence and absence of carbon dioxide. It is also observed that physical mixtures of Cu/SiO2 and ZnO/SiO2 catalysts are significantly more active than either of the components alone. The results are discussed in terms of possible interactions between copper and ZnO in the most active catalysts.  相似文献   

17.
雷宏  林笑笑  侯昭胤 《化工学报》2012,63(1):127-132
引言Cu/ZnO/Al2O3催化剂近年来广泛应用于低压甲醇合成、二甲醚合成和水煤气变换等领域[1-2],该催化体系具有活性高、使用寿命长、反应温度及  相似文献   

18.
Catalysts have been prepared by precipitating different amounts of ZnO on the surface of skeletal copper particles. The precursor copper catalysts were prepared by fully leaching CuAl2 particles with concentrated NaOH solutions in the presence and absence of sodium chromate. The resulting catalysts contained surface zinc oxide concentrations in the range 0-1.36 mg per m2 of catalyst surface.The influence of different concentrations of ZnO on the surface of skeletal copper was examined by the hydrogenation of CO2 using a mixture of 24% CO2/76% H2 at 4 MPa, 493-533K and space velocities up to 410 700 h-1. The catalysts were found to be highly active and selective for methanol synthesis. Methanol synthesis activity increased linearly with ZnO loadings with a maximum being reached at a loading of around 1.1 mg m-2 for higher surface area skeletal copper prepared by leaching in the presence of chromate. ZnO loadings were also shown to improve the selectivity of CO2 hydrogenation over copper by reducing the formation of CO by the reverse water-gas shift reaction.  相似文献   

19.
The rates of CO and CO/CO2 hydrogenation at 4.2 MPa and 523 K are reported for a series of Cu/SiO2 catalysts containing 2 to 88 wt.% Cu. These catalysts were prepared on a variety of silica sources using several different Cu deposition techniques. In CO/CO2 hydrogenation, the rate of methanol formation is proportional to the exposed Cu surface area of the reduced catalyst precursor, as determined by N2O frontal chromatography. The observed rate, 4.2×10–3 mole CH3OH/Cu site-sec, is within a factor of three of the rates reported by others over Cu/ZnO and Cu/ZnO/Al2O3 catalysts under comparable conditions. These results suggest that the ZnO component is only a moderate promoter in methanol synthesis. Hydrogenation of CO over these catalysts also gives methanol with high selectivity, but the synthesis rate is not proportional to the Cu surface area. This implies that another type of site, either alone or in cooperation with Cu, is involved in the synthesis of methanol from CO.  相似文献   

20.
The morphology (surface structure) of the copper component of an industrial Cu/ZnO/Al2O3 methanol synthesis catalyst has been studied by carbon monoxide temperature programmed desorption (CO TPD). The initial state morphology produced by hydrogen reduction at 513 K showed evidence of the existence of Cu(111), Cu(110) and Cu(211) surfaces. Surface oxidation of the copper by CO2 decomposition at 213 K followed by CO reduction at 473 K did not reproduce the initial state morphology, most of the Cu(110) surface being lost; at the same time there was a six-fold increase in the surface population of the (211) face. This new surface produced by CO2 decomposition at 213 K and CO reduction at 473 K was considerably less active in its ability to decompose CO2 at 213 K. Treatment of it with hydrogen at 513 K for 16 h caused the surface to reconstruct almost completely to its original state, with the Cu(110) face reappearing and the Cu(211) face being reduced in population to roughly its original value. The ability of the copper to decompose CO2 was proportionately restored. It is evident that in the synthesis of methanol using CO/CO2/H2 mixtures over Cu/ZnO/Al2O3 catalysts, the morphology of the surface of the copper will be in a continuous state of restructuring, which, depending on the conditions, has the potential to result in chaotic behaviour. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号