首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
Radiosurgery represents a minimally invasive radiologic method for the treatment of intracranial tumours and arteriovenous malformations. In 1994 the radiosurgical device 'Leksell Gamma Knife' (LGK) was installed in a dedicated logistic environment for outpatient treatments. High quality requirements have to be met for radiosurgery. The target point accuracy taking into account the whole system was shown to be reliably below 0.5 mm whereas the spatial therapeutic resolution was 0.035 cm3. Quality parameters of the dose plan were evaluated for the first 500 consecutive treatments. These values and examples of dose plans were used to emphasize the advantages of the treatment principle with multiple isocenters. An analysis of data in the literature revealed that there is no uniform standard of treatment available in radiosurgery. A highly significant correlation between a risk prediction model for the stereotactic linear accelerator on the one hand and a different model for the LGK on the other could be shown. This result could be helpful in order to proceed towards a more uniform treatment standard in radiosurgery and to improve overall treatment results.  相似文献   

2.
3.
Stereotactic radiosurgery is a method that applies a radiation dose to a limited and well-defined volume while the irradiation of adjacent healthy tissues is minimized. It is most commonly used in the treatment of intracranial lesions because the skull hardness assures the stable location of its contents. Treatment of the rest of the body has recently been proposed and carried out, using original immobilization systems. Stereotactic radiosurgery was first described in 1951 by the Swedish neurosurgeon Lars Leksell who originally used X-rays and then high-energy protons as a source of radiation. In the '80s photons from linear accelerators were used as radiation source, with various stereotactic systems and computerized treatment planning. The method used with all radiosurgical systems, regardless of the source of irradiation, is similar. The lesion is detected with common diagnostic imaging and adequate location frames. At present, to prevent errors in location, MRI and CT data are matched using an Image Fusion computer program. The objective of stereotactic radiosurgery is to destroy tumor cells or to induce changes in tissues that, as in brain arteriovenous malformations lead to the occlusion of their abnormal vessels. Stereotactic radiosurgery is increasingly used today in the treatment of a variety of intracranial lesions to the patients' benefit.  相似文献   

4.
Real time optimized treatment planning at the time of the implant is desirable for ultrasound-guided transperineal 125I permanent prostate implants. Currently available optimization algorithms are too slow to be used in the operating room. The goal of this work is to develop a robust optimization algorithm, which is suitable for such application. Three different genetic algorithms (sGA, sureGA and securGA) were developed and compared in terms of the number of function evaluations and the corresponding fitness. The optimized dose distribution was achieved by searching the best seed distribution through the minimization of a cost function. The cost function included constraints on the periphery dose of the planned target volume, the dose uniformity within the target volume, and the dose to the critical structure. Adjustment between the peripheral dose, the dose uniformity and critical structure dose can be achieved by varying the weighting factors in the cost function. All plans were evaluated in terms of the dose nonuniformity ratio, the conformation number and the dose volume histograms. Among these three GA algorithms, the securGA provided the best performance. Within 2500 function evaluations, the near optimum results were obtained. For a large target volume (5 cm x 4 cm x 4.5 cm) including urethra with 20 needles, the computer time needed for the optimization was less than 5 min on a HP735 workstation. The results showed that once the best set of parameters was found, they were applicable for all sizes of prostate volume. For a fixed needle geometry, the optimized plan showed much better dose distribution than that of nonoptimized plan. If the critical structure was considered in the optimization, the dose to the critical structure could be minimized. In the cases of irregular and skewed needle geometry, the optimized treatment plans were almost as good as ideal needle geometry. It is concluded that this new genetic algorithm (securGA) allows for an efficient and rapid optimization of dose distribution, which is suitable for real time treatment planning optimization for ultrasound-guided prostate implant.  相似文献   

5.
6.
Treatment planning and monitoring are essential components of mental health service delivery in the era of managed care. Personality assessment instruments have long been used by practitioners to assist in psychodiagnosis and the identification of treatment needs and goals. Nevertheless, managed-care companies and 3rd-party payers are reluctant to authorize psychological assessment service and, instead, prefer that clinicians base their plans on clinical interviews. Research is reviewed documenting the utility of personality assessment instruments in empirically guided treatment planning and the superiority of this method over clinical interviewing. A new psychological test designed specifically for use in treatment planning, the Butcher Treatment Planning Inventory (J. N. Butcher, in press), is introduced and described. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The potential for radiosurgery with an isocentric teletherapy cobalt unit was evaluated in three areas: (1) the physical properties of radiosurgical beams, (2) the quality of radiosurgical dose distributions obtained with four to ten noncoplanar converging arcs, and (3) the accuracy with which the radiosurgical dose can be delivered. In each of these areas the cobalt unit provides a viable alternative to an isocentric linear accelerator (linac) as a radiation source for radiosurgery. A 10 MV x-ray beam from a linac used for radiosurgery served as a standard for comparison. The difference between the 80%-20% penumbras of stationary radiosurgical fields in the nominal diameter range from 10 to 40 mm of the cobalt-60 and 10 MV photon beams is remarkably small, with the cobalt-60 beam penumbras, on average, only about 0.7 mm larger than those of the linac beam. Differences between the cobalt-60 and 10 MV radiosurgical treatment plans in terms of dose homogeneity within the target volume, conformity of the prescribed isodose volume to the target volume, and dose falloffs outside the target volume are also minimal, and therefore of essentially no clinical significance. Moreover, measured isodose distributions for a radiosurgical procedure on our Theratron T-780 cobalt unit agreed with calculated distributions to within the +/- 1 mm spatial and +/- 5% numerical dose tolerances, which are generally specified for radiosurgery. The viability of isocentric cobalt units for radiosurgery will be of particular interest to centers in developing countries where cobalt units, because of their relatively low costs, provide the only megavoltage source of radiation for radiotherapy, and could easily and inexpensively be modified for radiosurgery. Of course, the quality assurance protocols and mechanical condition of a particular teletherapy cobalt unit must meet stringent requirements before the use of the unit for radiosurgery can be advocated.  相似文献   

8.
PURPOSE: To evaluate the toxicity of stereotactic single-dose irradiation and to compare the own results with already existing risk prediction models. METHODS AND MATERIALS: Computed tomography (CT) or magnetic-resonance (MR) images, and clinical data of 133 consecutive patients treated with linear accelerator radiosurgery were analyzed retrospectively. Using the Cox proportional hazards model the relevance of treatment parameters and dose-volume relationships on the occurrence of radiation-induced tissue changes (edema, localized blood-brain barrier breakdown) were assessed. RESULTS: Sixty-two intraparenchymal lesions (arteriovenous malformation (AVM): 56 patients, meningioma: 6 patients) and 73 skull base tumors were selected for analysis. The median follow-up was 28.1 months (range: 9.0-58.9 months). Radiation-induced tissue changes (32 out of 135, 23.7%) were documented on CT or MR images 3.6-58.7 months after radiosurgery (median time: 17.8 months). The actuarial risk at 2 years for the development of neuroradiological changes was 25.8% for all evaluated patients, 38.4% for intraparenchymal lesions, and 14.6% for skull base tumors. The coefficient: total volume recieving a minimum dose of 10 Gy (VTREAT10) reached statistical significance in a Cox proportional hazards model calculated for all patients, intraparenchymal lesions, and AVMs. In skull base tumors, the volume of normal brain tissue covered by the 10 Gy isodose line (VBRAIN10) was the only significant variable. CONCLUSIONS: These results demonstrate the particular vulnerability of normal brain tissue to single dose irradiation. Optimal conformation of the therapeutic isodose line to the 3D configuration of the target volume may help to reduce side effects.  相似文献   

9.
The desire to improve local tumour control and cure more cancer patients, coupled with advances in computer technology and linear accelerator design, has spurred the developments of three-dimensional conformal radiotherapy techniques. Optimized treatment plans, aiming to deliver high dose to the target while minimizing dose to the surrounding tissues, can be delivered with multiple fields each with spatially modulated beam intensities or with multiple-slice treatments. This paper introduces a new method, intensity-modulated arc therapy (IMAT), for delivering optimized treatment plans to improve the therapeutic ratio. It utilizes continuous gantry motion as in conventional arc therapy. Unlike conventional arc therapy, the field shape, which is conformed with the multileaf collimator, changes during gantry rotation. Arbitrary two-dimensional beam intensify distributions at different beam angles are delivered with multiple superimposing arcs. A system capable of delivering the IMAT has been implemented. An example is given that illustrates the feasibility of this new method. Advantages of this new technique over tomotherapy and other slice-based delivery schemes are also discussed.  相似文献   

10.
PURPOSE: To analyze treatment delivery errors for three-dimensional (3D) conformal therapy performed at various levels of treatment delivery automation and complexity, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system (CCRS). METHODS AND MATERIALS: All treatment delivery errors which occurred in our department during a 15-month period were analyzed. Approximately 34,000 treatment sessions (114,000 individual treatment segments [ports]) on four treatment machines were studied. All treatment delivery errors logged by treatment therapists or quality assurance reviews (152 in all) were analyzed. Machines "M1" and "M2" were operated in a standard manual setup mode, with no record and verify system (R/V). MLC machines "M3" and "M4" treated patients under the control of the CCRS system, which (1) downloads the treatment delivery plan from the planning system; (2) performs some (or all) of the machine set up and treatment delivery for each field; (3) monitors treatment delivery; (4) records all treatment parameters; and (5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3; therefore, it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments, nonaxial and noncoplanar plans, multisegment intensity modulation, and pseudoisocentric treatments studied for a 6-month period (505 patients) concurrent with the period in which the delivery errors were obtained. Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines; therefore, this analysis does not depend on fixed therapist staff on particular machines. RESULTS: The overall reported error rate (all treatments, machines) was 0.13% per segment, or 0.44% per treatment session. The rate (per machine) depended on automation and plan complexity. The error rates per segment for machines M1 through M4 were 0.16%, 0.27%, 0.12%, 0.05%, respectively, while plan complexity increased from M1 up to machine M4. Machine M4 (the most complex plans and automation) had the lowest error rate. The error rate decreased with increasing automation in spite of increasing plan complexity, while for the manual machines, the error rate increased with complexity. Note that the real error rates on the two manual machines are likely to be higher than shown here (due to unnoticed and/or unreported errors), while (particularly on M4) virtually all random treatment delivery errors were noted by the CCRS system and related QA checks (including routine checks of machine and table readouts for each treatment). Treatment delivery times averaged from 14 min to 23 min per plan, and depended on the number of segments/plan, although this analysis is complicated by other factors. CONCLUSION: Use of a sophisticated computer-controlled delivery system for routine patient treatments with complex 3D conformal plans has led to a decrease in treatment delivery errors, while at the same time allowing delivery of increasingly complex and sophisticated conformal plans with little increase in treatment time. With renewed vigilance for the possibility of systematic problems, it is clear that use of complete and integrated computer-controlled delivery systems can provide improvements in treatment delivery, since more complex plans can be delivered with fewer errors, and without increasing treatment time.  相似文献   

11.
PURPOSE: The purpose of the study is to report the occurrence of optic neuropathy after stereotactic radiosurgery for perichiasmal tumors. METHODS: Records of four patients with visual deterioration after stereotactic radiosurgery were reviewed, including clinical findings, neuroimaging results, and treatment methods. RESULTS: Optic neuropathy developed 7 to 30 months after gamma knife radiosurgery. All patients experienced an abrupt change in visual function. Clinical findings indicated anterior visual pathway involvement. Patterns of field loss included nerve fiber bundle and homonymous hemianopic defects. Gadolinium-enhanced magnetic resonance imaging (MRI) showed swelling and enhancement of the affected portion of the visual apparatus in three patients. Systemic corticosteroids were administered in all patients and one partially recovered. One patient also received hyperbaric oxygen without improvement. CONCLUSIONS: Although rare, optic neuropathy may follow radiosurgery to lesions near the visual pathways. Careful dose planning guided by MRI with restriction of the maximal dose to the visual pathways to less than 8 Gy will likely reduce the incidence of this complication.  相似文献   

12.
1. Clubfoot is a relatively common abnormality that occurs in 1 per 1,000 live births. Untreated, clubfoot precludes normal gait because the patient is forced to walk on the lateral side of the forefoot. 2. Treatment of clubfoot should begin at birth to avoid a fixed and disabling deformity. Early treatment routinely involves serial manipulation, followed by adhesive strapping or casting of the manipulated foot to hold the correction. Although less than half of congenital clubfoot cases treated from birth will respond to serial manipulation and casting, it is generally the first choice of treatment. 3. If serial manipulation and adhesive strapping or casting do not correct the deformity, then surgery, one small part in the ongoing treatment, is necessary. With adequate preparation and planning, maximum benefit can be obtained from the surgical experience.  相似文献   

13.
PURPOSE: In axial, coplanar treatments with multiple fields, the superior and inferior ends of a planning target volume (PTV) are at risk to get underdosed due to the overlapping penumbras of all treatment fields. We have investigated a technique using intensity modulated x-ray beams that allows the use of small margins for definition of the superior and inferior field borders while still reaching a minimum PTV-dose of 95% of the isocenter dose. METHODS AND MATERIALS: The applied intensity modulated beams, generated with a multileaf collimator, include narrow (1.1-1.6 cm) boost fields to increase the dose in the superior and inferior ends of the PTV. The benefits of this technique have been assessed using 3D treatment plans for 10 prostate cancer patients. Treatment planning was performed with the Cadplan 3D planning system (Varian-Dosetek). Dose calculations for the narrow boost fields have been compared with measurements. The application of the boost fields has been tested on the MM50 Racetrack Microtron (Scanditronix Medical AB), which allows fully computer-controlled setup of all involved treatment fields. RESULTS: Compared to our standard technique, the superior-inferior field length can be reduced by 1.6 cm, generally yielding smaller volumes of rectum and bladder in the high dose region. For the narrow boost fields, calculated relative dose distributions agree within 2% or 0.2 cm with measured dose distributions. For accurate monitor unit calculations, the phantom scatter table used in the Cadplan system had to be modified using measured data for square fields smaller than 4 x 4 cm2. The extra time needed at the MM50 for the setup and delivery of the boost fields is usually about 1 min. CONCLUSION: The proposed use of intensity modulated beams yields improved conformal dose distributions for treatment of prostate cancer patients with a superior-inferior field size reduction of 1.6 cm. Treatments of other tumor sites can also benefit from the application of the boost fields.  相似文献   

14.
Fifty-seven patients with clinically localized prostate cancer were treated by radical prostatectomy or external radiation therapy following pelvic lymphadenectomy. Comparing the outcome of radiotherapy with that of prostatectomy in 42 T2 patients without lymph node metastasis, the 5-year cause-specific survival did not differ between the radical prostatectomy group (n = 31) and radiotherapy group (n = 11). The 5-year disease-free survival of the prostatectomy group, however, was superior to that of radiotherapy group (p = 0.01). To cure patients with T2 prostate cancer, therefore, it is supposed that radical prostatectomy should be performed. To improve the treatment outcome after radiotherapy, stereotactic radiosurgery for prostate cancer has been attempted in our institution. Phantom experiments using a linear accelerator demonstrated a round dose distribution, and high reproducibility of prostate positioning was confirmed by CT when a thermoplastic immobilization device was used to fix the pelvis. In one patient with localized prostate cancer treated by radiosurgery, acute complication has not been recognized during the 5 week follow-up. Radiosurgery may be available to treat clinically localized prostate cancer.  相似文献   

15.
BACKGROUND: Gamma knife radiosurgery is a safe and effective alternative to microsurgery in the management of selected intracranial lesions. In our initial three-year experience with gamma knife radiosurgery, 431 patients were treated using this method. This report presents the treatment results for three different types of brain tumors: benign meningiomas, malignant metastases and gliomas. METHODS: A retrospective study was performed to analyze a consecutive series of 71 meningiomas, 31 metastatic tumors and 21 gliomas treated by gamma knife radiosurgery between March 1993 and May 1996. The treatment results were investigated using regular magnetic resonance examinations and tumor volume measurement at six-month intervals to observe sequential changes of the tumors. Patients with meningiomas were further divided into three groups according to the peripheral radiation doses: high-dose (20-17 Gy, n = 18), medium-dose (16-15 Gy, n = 33) and low-dose (14-12 Gy, n = 20). The Generalized Estimation Equation was applied to compare treatment results in these three groups with different doses and tumor volumes. RESULTS: Volume measurements of the 71 meningiomas showed that 76% decreased in size, 16% stabilized and 8% increased in size. The volumes increased most frequently in the early stage (6-12 months) after treatment and subsequently regressed after the twelfth month. The tumor control rate for meningiomas in our three-year follow-up was over 90%. For meningiomas, the statistical analysis showed that both the radiation dose and tumor volume were significantly related to the development of adverse radiation effects (p < 0.05). In metastatic tumors, rapid tumor regression after radiosurgery was found in 87% of the patients. In gliomas, radiosurgery effectively inhibited tumor growth in selected patients with small, circumscribed, less infiltrative tumors. Ependymomas and low-grade astrocytomas had more favorable outcomes than other gliomas. CONCLUSIONS: Gamma knife radiosurgery is effective for controlling tumor growth in benign meningiomas for up to three years after surgery. In selected cases of malignant metastasis and gliomas, most patients appeared to benefit from the treatment with symptomatic improvement and prolonged survival. Treatment strategy and dose selection in radiosurgery should be adjusted to optimize tumor control and avoid adverse radiation effects.  相似文献   

16.
PURPOSE: To evaluate the efficacy and toxicity of gamma knife radiosurgery in the treatment of melanoma metastases to the brain. PATIENTS AND METHODS: We retrospectively reviewed 55 patients with single or multiple intracranial melanoma metastases treated at the University of California, San Francisco, with gamma knife radiosurgery from 1991 through 1995. Sixteen patients were treated with gamma knife radiosurgery for recurrence following previous radiation therapy, 11 received radiosurgery as a boost to whole-brain radiation therapy, and 28 had radiosurgery alone for initial management of brain metastases. The median minimum radiosurgery tumor dose for 140 treated lesions was 19 Gy (range, 10-22 Gy) prescribed at the 35% to 90% isodose contour (median, 50%). The median total target volume per patient was 6.1 cc (range, 0.25-28.3 cc). RESULTS: With a median follow-up of 75 weeks in living patients, the median survival times were 35 weeks overall: 35 weeks for patients with solitary metastases versus 33 weeks for those with multiple metastases. A factor that was significant in univariate analysis of survival was total target volume treated. This parameter remained significant on multivariate analysis. The actuarial median freedom from progression analyzed by lesion for 113 lesions in 46 patients with imaging follow-up was 89 weeks with 6-month and 1-year actuarial freedom from progression rates of 89% (95% confidence interval, 80%-95%) and 77% (95% confidence interval, 62%-87%). In univariate analysis, improved freedom from progression was associated with smaller target volume treated, smaller maximum diameter, or higher prescribed dose. Four patients (7%) developed acute Radiation Therapy Oncology Group grade > or = 2 morbidity, and five patients (9%) developed late grade > or = 2 morbidity. DISCUSSION: Median survival and freedom from progression in patients treated with radiosurgery for melanoma metastatic to the brain are comparable to results in published radiosurgery series of grouped histologies. For melanoma patients, total intracranial tumor volume appears to be of greater prognostic significance than the absolute number of metastases treated. We conclude that gamma knife radiosurgery is effective and should be considered among various management strategies.  相似文献   

17.
PURPOSE: A careful examination of the foundation upon which the concept of the Dose-Volume Histogram (DVH) is built, and the implications of this set of parameters on the clinical application and interpretation of the DVH concept has not been conducted since the introduction of DVHs as a tool for the quantitative evaluation of treatment plans. The purpose of the work presented herein is to illustrate problems with current methods of implementing and interpreting DVHs when applied to hollow anatomic structures such as the bladder and rectum. METHODS AND MATERIALS: A typical treatment plan for external beam irradiation of a patient with prostate cancer was chosen to provide a data set from which DVH curves for both the bladder and rectum were calculated. The two organs share the property of being shells with contents that are of no clinical importance. DVHs for both organs were computed using a solid model and using a shell model. Typical treatment plans for prostate cancer were used to generate DVH curves for both models. The Normal Tissue Complication Probability (NTCP) for these organs is discussed in this context. RESULTS: For an eight-field conformal treatment plan of the prostate, a bladder DVH curve generated using the shell model is higher than the corresponding curve generated using the solid model. The shell model also has a higher NTCP. A six-field conformal treatment plan also results in a higher DVH curve for the shell model. A treatment plan consisting of bilateral 120-degree arcs, results in a higher DVH curve for the shell model, as well as a higher NTCP. CONCLUSION: The DVH concept currently used in evaluation of treatment plans is problematic because current practices of defining exactly what constitutes "bladder" and "rectum." Commonly used methods of tracing the bladder and rectum imply use of a solid structure model for DVHs. In reality, these organs are shells and the critical structure associated with NTCP is obviously and indisputably the shell, as opposed to its contents. Treatment planning algorithms for DVH computation should thus be modified to utilize the shell model for these organs.  相似文献   

18.
PURPOSE: To test an established model of stereotactic radiosurgery-induced radiation injury with pretreatments of either methylprednisolone or the lazaroid U74389G. METHODS AND MATERIALS: Nine cats received stereotactic radiosurgery with a linear accelerator using and animal radiosurgery device. Each received a dose of 125.0 Gy prescribed to the 84% isodose shell to the anterior limb of the right internal capsule. One animal received no pretreatment, two received citrate vehicle, three received 30 mg/kg of methylprednisolone, and three received 5 mg/kg of U74389G. After irradiation, the animals had frequent neurologic examinations, and neurologic deficits developed in all of them. Six months after the radiation treatment, the animals were anesthetized, and had gadolinium-enhanced magnetic resonance (MR) scans, followed by Evans blue dye perfusion, euthanasia, and brain fixation. RESULTS: Magnetic resonance scans revealed a decrease in the size of the lesions from a mean volume of 0.45 +/- 0.06 cm(3) in the control, vehicle-treated, and methylpredniosolone-treated animals to 0.22 +/- 0.14 cm(3) in the U74389G-treated group. The scans also suggested the absence of necrosis and ventricular dilatation in the lazaroid-treated group. Gross pathology revealed that lesions produced in the untreated, vehicle-treated, and methylprednisolone-treated cats were similar and were characterized by a peripheral zone of Evans blue dye staining with a central zone of a mature coagulative necrosis and focal hemorrhage. However, in the U74389G-treated animals, the lesions were found to have an area of Evans blue dye staining, but lacked discrete areas of necrosis and hemorrhage. CONCLUSION: These results suggest that the lazaroid U74389G protects the normal brain from radiation injury produced by stereotactic radiosurgery.  相似文献   

19.
PURPOSE: Quality of a brachytherapy application depends on the choice of the target volume, on the dose distribution homogeneity and radiation injury on critical tissue, which should be postulated by advanced brachytherapy treatment planning systems. MATERIAL AND METHODS: Basic imaging method for conformal treatment planning is the cross-sectional imaging. The clinical applicability of a new type 3D planning system using CT and/or MRT-simulation or US-simulation for planning purposes was studied. The planning system developed at Kiel University differs from usual brachytherapy planning systems because of the obligatory use of cross-sectional imaging as basic imaging method for reconstruction of structures of interest. Dose distribution and normal anatomy can be visualized on each CT/MRT/US slice as well as coronal, sagittal, axial and free chosen reconstruction (3D), as well as dose-volume histogram curves and special colour-coded visualization of dose homogeneity in the target can be analyzed. RESULTS: Because of the experience in the clinical routine, as well as on the base of 30 simultaneous planning procedures on both 2D (semi-3D) and 3D planning systems we observed similar time consumption. Advantages of 3D planning were the better interpretation of target delineation, delineation of critical structures as well as dose distribution, causing more accurate volume optimisation of dose distribution. CONCLUSION: Conformal brachytherapy treatment planning for interstitial brachytherapy means significant advantages for the clinical routine compared to 2D or semi-3D methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号