首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
复合材料层板层间缺陷分析——剪切滑移   总被引:2,自引:1,他引:1       下载免费PDF全文
根据三维弹性平衡方程和层间剪切滑移条件,导出了一个复合材料层板层间剪切滑移模型。本文模型具有一般形式的二维板壳理论的位移场及其平衡方程,但因引入了能反映层板界面粘贴情况及板面条件的剪切变形函数,模型因而简单又精确。层板的弯曲问题和屈曲问题被考虑,层间弱粘贴的影响被讨论。数值结果与精确解比较,表明了本文模型的高精度。   相似文献   

2.
复合材料多层厚板的精化高阶理论及其有限元法   总被引:9,自引:3,他引:6       下载免费PDF全文
本文提出了一种经过改进的复合材料多层厚板的精化高阶剪切变形理论,采用Legendre多项式来逼近位移场沿厚度方向的分布,较好地模拟了横向剪切变形和层间拉、压变形,利用层板上,下自由表面横向剪应力为零的边界条件,对所假定的位移场作了化简,在此基础上构造了相应的有限元.文中通过一些典型算例,与Pagano的弹性力学精确解[9]以及其他高阶理论的解作了比较,说明本文的精化高阶剪切变形理论及其相应的有限元具有精度高和收敛快的优点.  相似文献   

3.
复合材料多层厚板的精化高阶理论及其有限元法   总被引:2,自引:0,他引:2       下载免费PDF全文
本文提出了一种经过改进的复合材料多层厚板的精化高阶剪切变形理论,采用Legendre多项式来逼近位移场沿厚度方向的分布,较好地模拟了横向剪切变形和层间拉、压变形,利用层板上,下自由表面横向剪应力为零的边界条件,对所假定的位移场作了化简,在此基础上构造了相应的有限元.文中通过一些典型算例,与Pagano的弹性力学精确解[9]以及其他高阶理论的解作了比较,说明本文的精化高阶剪切变形理论及其相应的有限元具有精度高和收敛快的优点.   相似文献   

4.
含椭圆形分层层板的状态分解-片条合成能量解法   总被引:4,自引:4,他引:0       下载免费PDF全文
根据叠加原理将含有椭圆形非穿透分层的层板在横向载荷作用下的受力状态进行分解,从而将分层问题归结为在分层表面上的附加剪切载荷作用下层板附加位移与附加应力的分析,并据此建立了一个仅包含分层区的力学模型。进而在层板分层区中切取平行于坐标平面的切片,将切片视为含分层的层合梁,其位移模态以相应层合梁的附加位移模态来表示。这样,可构造层板分层区内满足位移边界条件的位移场。最后,应用最小势能原理确定位移幅值的闭合解。计算结果表明,挠度幅值远远大于中面位移幅值,且与由双三角级数能量解法所得挠度幅值吻合很好。   相似文献   

5.
根据叠加原理将含有矩形内部分层的层板在横向载荷作用下的受力状态进行分解, 从而 将分层问题归结为在分层表面上的附加剪切载荷作用下层板附加位移与附加应力的分析, 并据此 建立了一个仅包含分层区的力学模型。进而在层板分层区中切取平行于边界的切片, 将切片视为 含分层的层合梁, 其位移模态以相应层合梁的附加位移模态来表示。这样, 可构造层板分层区内满 足位移边界条件的位移场。最后, 应用最小势能原理确定位移幅值的闭合解。计算结果表明, 挠度 幅值远远大于中面位移幅值, 且与由双三角级数能量解法所得挠度幅值吻合很好。   相似文献   

6.
基于一个六自由度的位移场和电势场, 建立了压电复合材料层板的控制方程。在简支边界条件下, 得到了正交矩形压电复合材料层板的解析解。该理论是一个等效单层理论, 控制方程的变量仅六个, 且不随层数变化, 使解的数学过程简洁。在该理论中, 决定精度的位移分布函数和电势分布函数由三维应力和静电平衡方程的特解来确定, 使之满足压电层板界面连续条件与板面力及电条件。算例验证了本文中等效单层理论的高精度。  相似文献   

7.
复合材料斜交层板柱状弯曲的翘曲修正模型   总被引:1,自引:0,他引:1       下载免费PDF全文
研究复合材料斜交层板的柱状弯曲问题,建立新的数值计算方法。在厚度方向,利用翘曲修正理论,推导出了层板面内位移的两个序列分布规律;在长度方向,采用升阶谱位移函数,应用最小势能原理,给出了层板柱状弯曲的特殊有限元模型。通过典型例题的计算表明:应力、位移在厚度方向的分布计算结果与精确弹性解符合很好。本文方法的自由度少,方法简单,优于一阶剪切理论、高阶理论,适用于解决层板弯曲问题。  相似文献   

8.
根据叠加原理将横向载荷作用下的含有非对称矩形内部分层的层板进行状态分解,从而将分层问题归结为分层表面上的附加剪切载荷作用下层板附加位移与附加应力的分析,并据此建立一个仅包含分层区的简单的力学模型。进而在分层区中切取平行于边界的无限小的切片,将切片视为含分层的层合梁,其位移模态以相应的层合梁的附加位移模态表示。在此基础上构造层板分层区内满足位移边界条件的位移模态,最后用最小势能原理确定位移幅值的闭合解并且分析了分层区的应力场和能量释放率。   相似文献   

9.
岑松  龙驭球等 《工程力学》2001,(A01):355-363
基于一阶剪切变形理论(FSDT),本文采用面积坐标构造一种新型20自由度(每结点5个自由度),四边形复合材料层合板单元,适合于任意铺设情形的层合板的计算。它是按如下方式构造的:(1)引入平面内双线性位移场来体现层合板面内与弯曲的耦合作用;(2)单元每边的剪应变由Timoshenko层合厚梁理论来确定,对单元域内的剪应变场进行合理的插值;(3)将四边形面积坐标法与广义协调理论相结合,求解单元挠度场。针对位移复合材料板单元提出了一种新型应力杂交化后处理方法来改善单元计算应力的能力,使位移型单元可以简单和正确地预测层合板的应力,特别是层间横向剪应力的解。本文单元,记为TACQ20,不存在剪切闭锁现象,对位移和应力都可以得到高精度的结果。  相似文献   

10.
李道奎  周建平  雷勇军 《工程力学》2004,21(2):114-118,151
研究了含任意内埋矩形脱层复合材料层合板的屈曲问题。采用一种基于Mindlin一阶剪切理论的条形传递函数方法,将含内埋矩形脱层的复合材料层合板分成含脱层和不含脱层的两种矩形超级单元,然后由各超级单元之间连接结点处的位移连续和力平衡条件得到脱层板屈曲的特征方程,进而得到脱层板的屈曲载荷和屈曲模态。进行参数分析发现,脱层大小、深度、位置以及脱层板的边界条件和复合材料铺层方向对脱层板屈曲载荷的影响较显著。  相似文献   

11.
A higher-order shear deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, Vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.  相似文献   

12.
This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.  相似文献   

13.
A layerwise trigonometric shear deformation theory for flexural analysis of two-layered laminated plates, taking into account transverse shear deformation effects, is presented. The present theory has only three variables, that is, two variables less than those in the first-order shear deformation theory. The displacement field uses a sinusoidal function in terms of thickness coordinate to represent the shear deformation. The noteworthy feature of the theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with reasonable accuracy, satisfying the shear stress free surface conditions at the top and bottom surfaces of the plate and continuity conditions at interface between the layers. The transverse shear stresses can also be obtained, with better accuracy, by integrating equilibrium equations. The theory obviates the need for a shear correction factor. The governing equations and boundary conditions are obtained using the principle of virtual work. A two-layered cross-ply laminated plate is considered for the numerical study to demonstrate the efficacy of the theory. The results obtained using the present theory are discussed critically with those of other theories and are found to agree well with the exact elasticity results.  相似文献   

14.
A new shear deformation theory for sandwich and composite plates is developed. The proposed displacement field, which is “m” parameter dependent, is assessed by performing several computations of the plate governing equations. Therefore, the present theory, which gives accurate results, is relatively close to 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature.  相似文献   

15.
《Composites Part B》2003,34(1):67-82
A higher order zig-zag plate theory is developed to refine the predictions of the mechanical, thermal, and electric behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Artificial shear correction factors are not needed in the present formulation. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick smart composite plate under mechanical, thermal, and electric loads combined.  相似文献   

16.
Reliability analysis of nonlinear laminated composite plate structures   总被引:3,自引:0,他引:3  
A procedure for the reliability analysis of laminated composite plate structures subjected to large deflections under random static loads is presented. The nonlinear analysis of laminated composite plate structures is achieved via a corotational total Lagrangian finite element formulation which is based on the von Karman assumption and first order shear deformation theory. This formulation is applicable for the nonlinear analysis of plate structures with large rotations but moderate deformation and thus accurate enough to predict the behavior of the structures at the point of failure. The reliability assessment of laminated composite plate structures with random strength subjected to random loads is approached by the determination of limit state surfaces in load space. The limit space surfaces are obtained by performing a series of first ply failure analyses following different load paths in load space using the proposed nonlinear structural analysis technique and an appropriate failure criterion. A numerical technique is then proposed to evaluate the reliability of the plate structures. Examples of the reliability analyses of laminated plates with different layer orientations subject to random loads are given for illustration.  相似文献   

17.
The objective of this paper is to present an equivalent single-layer shear deformation theory for evaluation of displacements and stresses of cross-ply laminated plates subjected to uniformly distributed nonlinear thermo-mechanical load. A trigonometric shear deformation theory is used. The in-plane displacement field uses a sinusoidal function in terms of the thickness coordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of a shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to uniformly distributed nonlinear thermo-mechanical load are obtained. Numerical results of the present theory for displacement and thermal stresses are compared with those of classical, first-order and higher-order shear deformation plate theories.  相似文献   

18.
A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation is developed. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the parabolic variation of shear strain through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Material properties of functionally graded plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as Pasternak foundation. Equations of motion are derived using Hamilton’s principle. Closed-form solution of rectangular plates is derived, and the obtained results are compared well with three-dimensional elasticity solutions and third-order shear deformation theory solutions. Finally, the influences of power law index, thickness ratio, foundation parameter, and boundary condition on the natural frequency of plates have been investigated.  相似文献   

19.
In this paper, an efficient and simple higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with 3-dimensional and quasi-3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.  相似文献   

20.
An attempt has been made to study the effect of cross-sectional warping in the symmetrically laminated anisotropic composite sandwich plates for transient loads. A higher-order shear deformation theory (HOST) is used in conjunction with the simple displacement based C° finite element method (FEM). As is well-known, the classical first-order theories hitherto considered were inadequate to describe the propagation of waves in the highly orthotropic sandwich laminates. The present theory, which is more accurate than the Reissner-Mindlin theory, is applied herein, for the evaluation of plate response to different types of dynamic loads. An explicit central difference scheme is employed for the integration of dynamic equations of equilibrium with a diagonalized mass matrix obtained by a special procedure applicable to quadrilateral isoparametric elements. The numerical results of the present investigation have been compared with the first-order shear deformation theory (FOST) and the differences between HOST and FOST are examined. The results presented here should be useful in obtaining better correlation between theory and experiment, and to numerical analysts in verifying their results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号