首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To improve friction and wear performance and service life of the disc-brake pair material of a drilling rig, a new type of asbestos-free frictional material with better performance for disc-brake blocks is developed, and its wear mechanism is investigated by friction and wear experiments. Topography and elementary components of the brake block’s wear surface are analyzed by employing SEM and EDAX patterns, revealing its tribological behaviour and wear mechanism. When the frictional temperature is lower, the surface film of the brake block is thinner, dense, smooth with plasticity, and divided into the mixture area, Feabundant area, carbon-abundant area and spalling area. The mixture area consists of various constituents of frictional pairs without ploughing and rolling trace. The Fe-abundant area mainly consists of iron and other constituents. The carbon-abundant area is the zone where graphite and organic fibre are comparatively gathered, while the spalling area is the zone where the surface film is spalled and its surface is rough and uneven, with a loose and denuded state. During the period of high frictional temperature, the frictional surface is also divided into the mixture area, Feabundant area and spalling area. In this case, the mixture area consists of abrasive dust from friction pairs, and the surface film is distributed with crumby hard granules, exiguous oxide, carbide granules and sheared slender fibre. The Fe-abundant area is mostly an oxide layer of iron with a flaky distribution. Fracture and spalling traces as well as an overlapping structure of multilayer surface films can be easily found on the surface film. The components of the spalling area are basically the same as that of the matrix. At the beginning of wear, the hard peaks from the friction surface of the disc-brake plough on the surface of the brake block. With increasing frictional temperature, the friction surface begins to soften and expand, and oxidized wear occurs at the same time. During the high-temperature wear period, severely influenced by friction heat, obvious softening and plastic flow can be found on the friction surface of the brake block, its anti-shearing ability is weakened, and adhesive wear is intensified. Thermal decomposition of cohesive material in the brake block is simultaneously strengthened, so that constituents shed due to loss of adhesion. Organic fibre is in a flowing state and obviously generates drawing, shearing, carbonization and oxidization. In addition, thermal cracking, thermal oxidization, carbonization and cyclization of organic substances on the surface of brake block can make the friction surface produce pores or cracks, thus fatigue wear occurs.  相似文献   

2.
为提高深井石油钻机盘式刹车副的摩擦学性能和使用寿命,研制开发了新型刹车盘表面堆焊材料和无石棉刹车块摩擦材料,并通过变温摩擦磨损性能实验,研究了刹车副的摩擦学性能。研究表明,刹车副具有良好的变温摩擦特性和高温抗热衰退性能,高温下的摩擦因数比较稳定;刹车块和刹车盘的磨损率均随温度的升高而增大,但刹车盘表现出相对稳定的耐磨性能。载荷对刹车副的摩擦因数影响不大,变化比较平稳;刹车块和刹车盘的磨损率均随载荷的增大而增大,但刹车块表现出相对稳定的耐磨性。刹车副的摩擦因数随滑动速度的增加而增大,并趋向平稳;但速度对刹车块和刹车盘的磨损率影响不大,变化相对稳定。研制的刹车副材料能够满足石油矿场钻机作业的要求。  相似文献   

3.
对有机石棉和半金属衬片材料与不同化学组分的灰铸铁制动盘(鼓)进行摩擦性能试验。分析了对偶材质对衬片磨损及摩擦系数的影响及衬片材质对制动盘(鼓)磨损的影响。提出了评定衬片材料的耐磨性必须标明对制动盘(鼓)的损伤及制动副材料的最佳选配问题。  相似文献   

4.
高速列车制动片摩擦块尺寸对制动噪声特性的影响   总被引:1,自引:0,他引:1  
同一工况下,在制动摩擦噪声试验机上使用3种不同尺寸的圆形摩擦块进行制动摩擦噪声对比试验,通过对不同摩擦块尺寸状态下的界面噪声信号进行等效声压级分析和频谱分析,研究摩擦块尺寸对制动噪声特性的影响;对界面磨损形貌采用光学显微镜和二维轮廓仪进行分析,并计算出摩擦界面上的摩擦弧长,以揭示摩擦块尺寸对制动噪声行为的影响机制。结果表明:在试验条件下,摩擦面积相同时,大圆形摩擦块能有效地抑制制动噪声,而中圆形和小圆形摩擦块的制动噪声强度较大;相较于大圆形摩擦块,中圆形和小圆形摩擦块表面出现明显犁沟和剥落等"不平顺"磨损因素会造成高强度的尖叫噪声;大圆形摩擦块相比于中圆形和小圆形摩擦块的摩擦弧长较短,这也是造成大圆形摩擦块状态下制动噪声强度减弱的一个重要因素。  相似文献   

5.
盘式制动器摩擦磨损热动力学研究进展   总被引:3,自引:0,他引:3  
摩擦磨损热动力学是制动器失效分析和设计的重要理论依据,对选择摩擦副材料也有指导作用.因此从分析摩擦热对制动器摩擦副的影响着手,总结了盘式制动器摩擦磨损热动力学的数学、物理模型,并对制动摩擦表面温度场和应力场的计算方法进行分析比较,评述了盘式制动器摩擦磨损热动力学的研究进展,并对今后主要研究工作进行了展望.  相似文献   

6.
为了优化拖缆机刹车部件的设计参数,同时进一步提高刹车片的耐磨性能,采用MPV-600型磨粒磨损试验机研究无石棉树脂摩擦片和黄铜试样与45#钢配副在干摩擦条件下的摩擦学性能,利用体式显微镜观察试样的磨损形貌并分析其磨损机制。结果表明:摩擦热引起的温升导致的硬度下降及磨损机制的改变是干摩擦条件下摩擦片磨损的主要原因;树脂刹车片的耐热性能、耐磨性能均好于黄铜试样,树脂刹车片与钢配副的摩擦因数主要是由树脂刹车片中的铜纤维材料决定的;干摩擦条件下树脂摩擦片的磨损机制是以磨粒磨损和氧化磨损为主,而黄铜试样以磨粒磨损和黏着磨损为主。  相似文献   

7.
为了研究聚四氟乙烯(PTFE)填充铜网复合材料的摩擦磨损性能以及细观损伤机制,使用往复摩擦磨损试验机对其进行全寿命磨损测试,并用扫描电子显微镜、光学显微镜和三维形貌仪对材料摩擦面及磨屑进行表征。结果表明:PTFE填充铜网复合材料全寿命(202 h)磨损过程主要分为磨合、稳定磨损和严重磨损3个阶段;在前20 h磨合阶段,摩擦因数逐渐升高,高载荷下大量的PTFE被挤出导致磨损率较大,同时转移膜生成,失效形式主要为机械剪切力下的剥落。在20~190 h稳定磨损阶段,摩擦因数先降低再升高且波动较大,磨损率趋于稳定,磨损机制主要为磨粒磨损,磨屑由层片状向粉末状转变,材料摩擦面粗糙度逐渐降低且磨损不均匀。通过微观表征,发现铜网编织结点与凸峰处磨损严重,通过受力仿真分析,发现铜网编织结点与凸峰处有应力集中现象,与试验中磨损严重的区域正好相对应,试验与数值模拟相关联。在190~202 h严重磨损阶段,摩擦因数和磨损量进一步升高,材料的耐磨性能与润滑性能急剧下降,最后材料被磨穿失效。  相似文献   

8.
在NENE-2型磨损试验机上利用往复滚动试验装置研究了不同制动状态下车轮钢的滚动摩擦磨损特性。结果表明:不同滚滑状态下的切向摩擦力是变化的,随制动力的增加,滚动摩擦副对应的摩擦因数和摩擦阻力相应增大;平面试样的表面磨痕形貌由于切向摩擦力的变化而明显不同;随切向摩擦力的增大滚动磨损机制亦发生改变,从磨粒磨损逐渐转变为粘着磨损,磨损加剧且磨痕深度变大。  相似文献   

9.
《Wear》2007,262(5-6):736-741
Using a constant speed tester, the friction and wear characteristics of sisal fibre reinforced brake composites with different contents at separate friction temperatures were studied, and its tribology and wear character were discussed. It's showed that the friction and wear properties of sisal brake composites reach the optimum point when the proportion between resin and sisal fibre is 3:4. Compared with asbestos and mineral/steel fibre, sisal fibre reinforced friction composites shows that the friction coefficient is good for fitting with low wave rate at different friction temperatures. The sisal is an ideal substitute of asbestos for brake pads.  相似文献   

10.
The current researches of the wear and spalling behaviors of wheel/rail materials focus on the field investigation rather than the mechanism. However, it is necessary and significant for clarifying the mechanism and relationship between the wear and spalling damage of railway wheel to test and reproduce the wheel damages in laboratory. The objective of this paper is to investigate the wear and spalling damage behaviors of railway wheel using a JD-1 wheel/rail simulation facility, which consists of a small wheel serving as rolling stock wheel, and a larger wheel serving as rail. The damage process of wheel roller is explored in terms of the creep ratio, axle load, and carbon content by means of various microscopic examinations. The experimental results show that the wear volume growth of wheel roller is proved to be proportional to the increase of the creep ratio and normal load between simulating wheel and rail. The increase of carbon content of wheel material causes a linear reduction in the wear volume. The microscopic examinations indicate that the rolling wear mechanism transfers from abrasive wear to adhesive and fatigue wear with an increase of tangential friction force, which results in the initiation of fatigue crack, and then aggravates spalling damage on the wheel roller surface. The surface hardness of material depends strongly upon its carbon content. The decrease of the carbon content of wheel material may alleviate spalling damage, but can cause a significant growth in the wear volume of wheel roller. Therefore, there is a competitive relationship between the wear and spalling damage of wheel material. This research proposes an important measure for alleviating or preventing the wear and spalling damage of railway wheel material.  相似文献   

11.
In the article, the structure of a bench for testing the friction characteristics of a friction pair of centrifugal brake rollers has been considered. The dependences of the coefficient of friction and wear on the temperature of the materials of the friction pair, viz., a brake insert manufactured by Huzhou Jiutong Logistics Machinery Co., Ltd (China) and a domestic friction pair of the 6KV-10 rolled brake band of the EM-2 grade over St.3 steel grade (A537Gr.58), were obtained for temperature ranges that do not exceed 100°C. It has been shown that the rubber–PA6 friction pair widely used in brake rollers of foreign manufacture cannot be employed at high values of the slip velocity and the normal force applied to the friction lining, as it results in rapid heating to the critical temperature and, as a consequence, intensive wear. The domestic 6KV-10 brake band of the EM-2 grade, along with a metallic roller shell is proposed as the material of the friction pair. The frictional material proposed for the friction lining has a high coefficient of friction and a high wear resistance in a wide range of operating temperatures, normal forces, and temperatures of the frictional contact.  相似文献   

12.
刘中华  刘政  杜慧杰 《润滑与密封》2022,47(10):176-184
磁浮列车中部分制动闸片在服役时一直处于受流状态,导致材料磨损加剧,影响闸片的服役寿命。为研究中低速磁悬浮列车制动闸片在受流工况下的摩擦磨损性能,以制动闸片使用的铜基粉末冶金材料和刹车盘使用的Q235B材料为摩擦副,研究不同制动速度下铜基粉末冶金/Q235B摩擦副的载流摩擦磨损行为。结果表明:无电流时随着滑动速度的增大,摩擦因数及磨损率整体呈现下降的趋势,载流时随着滑动速度的增大,摩擦因数整体呈现下降的趋势,而磨损率则整体呈现上升的趋势;无电流时磨损后的铜基粉末冶金材料表面覆盖着一层靛色的第三体层,该第三体层低速时主要以颗粒状为主,随着速度的增加逐渐被压实成连续致密状,高速时因黏着磨损加剧使得连续致密状第三体被破环,导致材料的摩擦因数和磨损率呈现反向增长的趋势;载流下磨损后的铜基粉末冶金材料表面出现了以机械磨损为主和以电弧烧蚀为主的2个区域,其中以机械磨损为主的区域依然是由靛色的第三体层组成,而以电弧烧蚀为主的区域表面则覆盖了一层金色熔融状物质,并且随着速度的增大,烧蚀区面积也逐渐增大。  相似文献   

13.
The effect of load range of 30-100 N and speed range of 3-12 m/s on the wear and friction behavior of sand cast brake rotor made of A359-20 vol% SiC particle composites sliding against automobile friction material was investigated. Dry sliding frictional and wear behavior were investigated in a pin-on-disc type apparatus. Automobile friction material was used as pin, while the A359-20 vol% SiC particle composites formed the rotating disc. For comparison, the wear and friction behavior of commercially used cast iron brake rotor were studied. The results showed that the wear rate of the composite disc decreased with increasing the applied load from 30 to 50 N and increased with increasing the load from 50 to100 N. However, the wear rate of the composite disc decreased with increasing the sliding speed at all levels of load applied in the present work. For all sliding speeds, the friction coefficient of the composite disc decreased with applied load. The worn surfaces as well as wear debris were studied using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyzer and X-ray diffraction (XRD) technique. At load of 50 N and speed range of 3-12 m/s, the worn surface of the composite disc showed a dark adherent layer, which mostly consisted of constituents of the friction material. This layer acted as a protective coating and lubricant, resulting in an improvement in the wear resistance of the composite.  相似文献   

14.
N.S.M. EL-Tayeb  K.W. Liew 《Wear》2009,266(1-2):275-287
In this work, dry and wet continuous sliding performances of newly developed four different non-commercial frictional brake pad materials (NF1, NF2, NF4, and NF5) were evaluated and compared with other two chosen commercial brake pad materials (CMA and CMB) using a small-scale tribo-tester of pad-on-disc type.Results showed that under dry continuous braking, friction coefficients for all non-commercial brake pad materials including the CMB were insensitive to the type of brake pad materials. In addition, all brake pad materials showed a slight increase in the friction coefficients (5–19%) with increasing pressure or speed. Meanwhile, the wear rates were substantially dependent on the type or ingredient of brake pad materials and the pressure. Conversely, under wet sliding condition, the friction coefficients were decreased by a factor of 2. Moreover, no evidence of HD water film could be evidenced as the measured friction coefficient values were in the order of dry friction. Thus, the wet results suggested that the friction behaviour was influenced by factors other than HD film, and the values of friction coefficient were in the range of dry friction, mixed and boundary lubrication friction. Qualitative assessment of the SEM morphologies of brake pad surfaces showed that tribofilms were easily formed in dry braking and hardly formed in wet braking. Besides, all brake pad rubbing surfaces showed contact plateaus “patches” and disintegrations of various sizes and locations depending on the braking condition. Furthermore, the removal of material was associated with either mechanical crushing action performed by entrapped wear debris or due to disintegration of plateaus which were accelerated by spraying the water.  相似文献   

15.
This study examined the frictional force oscillation induced by the corrosion of brake discs when two different types of brake friction materials (low-steel and non-steel types) were used. Corrosion of the disc was carried out in an environmental chamber using burnished discs to simulate disc corrosion in a parked vehicle. The thickness of the oxide layers on the discs after corrosion was examined using non-contacting distance probes, and the change in brake torque was analyzed using a single-end brake dynamometer. The results showed that the oxide thickness on the disc was affected by the friction film on the burnished disc surface, and the friction force oscillation was closely related to the removal of the oxide layers while applying the brake. The low-steel friction material removed the oxide layer faster in the early stage than the non-steel friction materials so that it produced small oscillations in the friction force. However, the low-steel friction material increased the amplitude of the friction force in the later stage of the extended brake tests due to the excessive DTV (disc thickness variation). On the other hand, the non-steel friction material produced large friction force oscillations in the early stage with the amplitude decreasing in the later stage of brake application due to removal of the oxide film.  相似文献   

16.
Monomer casting polyamide 6 (MC PA6)/boron nitride of single layer (SBN) nanocomposites were successfully synthesized by in situ ring-opening polymerization. SBN was prepared by sonication assisted with solution beforehand. Studies on frictional and wear performance of the nanocomposites were carried out on a block-on-ring tester. The results showed that the nanocomposites had lower wear rates and friction coefficients in comparison with neat MC PA6. The incorporation of 0.25 wt% SBN into MC PA6 significantly reduced wear and friction under dry sliding; however, with further increasing the SBN loading, both wear rate and friction coefficient began to increase. The SEM micrographs of the worn surface revealed their friction and wear mechanisms. Pure MCPA6 was characterized by severe lamellar spalling with adhesive wear being the major wear form which caused high friction and wear. The wear modes of the nanocomposites became mainly abrasive wear with lower content of SBN and displayed fatigue wear with higher content of SBN. The morphology of a uniform transfer film on the counterpart ring and fine wear debris for the nanocomposites corresponded to the improved tribological performance.  相似文献   

17.
G.P Ostermeyer 《Wear》2003,254(9):852-858
The paper deals with the principal wear mechanism in brake systems and introduces a new dynamical model of the friction coefficient, where necessarily both friction and wear are taken into account. This model explains many open questions on the principal functionality of brake systems.In brake systems, characteristic structures are formed in the contact area by the flow of wear particles. Modulated by the friction power the wear particles are used by the system to build up hard contact patches on the brake pad. Nearly all energetic dissipation of the system is concentrated on these patches. By wear, these contact patches are destroyed after some time.So the friction coefficient is given by the equilibrium of flow of birth and death of contact patches. The resulting dynamical model describes the dynamical behaviour of the friction coefficient and the dependence of the temperature in the friction layer.This theory explains the fading effect of brake systems as well as complex hysteretic effects in the diagram of the friction coefficient versus the velocity, known from instationary measurement procedures.The structure of this theory seems to be quite general to describe other frictional systems too.  相似文献   

18.
本文用SEM观察分析了等离子喷涂陶瓷涂层(Metco136F,Metco80NS,Metco102,Metco105,Metco202NS,国产Al 2O 3)在高温无油和有油润滑下的摩擦磨损机理。发现陶瓷涂层仍会象金属摩擦副那样出现疲劳脱落、塑性形变、粘着撕裂。450℃时的干摩擦系数比有油润滑的摩擦系数高得多,且磨损表面形貌和磨损机理与有油润滑时大为不同。干磨擦是较易出现粘着磨损,而有润滑时则较难出现。  相似文献   

19.
D.M. Rowson 《Wear》1978,47(2):323-328
The equations for the surface temperature rise at the interface between a friction material and a brake disc have been rederived to show how they are interrelated. By making assumptions about how the heat generated during braking enters the brake disc, the surface temperature rises for the bulk surface and for the actual contact area have been calculated. These are compared with the observed bulk surface temperature rise and the temperature rise at the actual contact area estimated from the structure of the wear debris produced during braking, using an asbestos-based friction material rubbing on a cast-iron brake disc.  相似文献   

20.
采用粉末冶金技术制备铜-10%石墨烧结材料,通过GF150D型摩擦试验机,在干摩擦状态及制动压力为0.51 MPa的条件下,研究不同制动方式对材料摩擦磨损性能的影响。结果表明,采用从高速到低速分段制动方式(摩擦方式A)时,随着制动速度降低,摩擦表面形成的致密第三体破碎、剥落,机械啮合力增加,摩擦因数提高;同时,摩擦表面温度下降,基体强度提高,磨损率降低。采用从高速到低速连续制动方式(摩擦方式B)的摩擦因数和磨损量均大于摩擦方式A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号