首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m3/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and f factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins. __________ Translated from Journal of Shanghai Jiaotong University, 2007, 41(3): 380–383 [译自: 上海交通大学学报]  相似文献   

2.
Delta winglets are known to induce the formation of streamwise vortices and increase heat transfer between a working fluid and the surface on which the winglets are placed. This study investigates the use of delta winglets to augment heat transfer on the tube surface of louvered fin heat exchangers. It is shown that delta winglets placed on louvered fins produce augmentations in heat transfer along the tube wall as high as 47% with a corresponding increase of 19% in pressure losses. Manufacturing constraints are considered in this study whereby piercings in the louvered fins resulting from stamping the winglets into the louvered fins are simulated. Comparisons of measured heat transfer coefficients with and without piercings indicate that piercings reduce average heat transfer augmentations, but significant increases still occur with respect to no winglets present.  相似文献   

3.
《Applied Thermal Engineering》2007,27(11-12):2131-2137
When an extended surface is needed on only one fluid side (such as in a gas-to-liquid exchanger) or when the operating pressure needs to be contained on one fluid side, a tube-fin exchanger may be selected, with the tubes being round, flat, or elliptical in shape. The paper is concerned with the performance evaluation of flat tube fin heat exchangers (TFHE), having different fin configurations and flat tubes. The thermal performance of each configuration is based on the ε-NTU method. The extensive experimental research data of Kays and London available in the form of graphs are translated into algebraic relations for developing computational models. From the present work, a generalized heat transfer correlations is proposed based on geometrical parameters for the effectiveness of the heat exchanger. The generalization is with respect to the different fin surface geometry and not with the different combination of hot and cold fluids. The correlation is limited in its applicability to gas to water heat exchangers only. Further, guidelines are proposed for an easy way of designing a TFHE using correlations based on geometrical parameters and the same is compared with traditional ε-NTU method.  相似文献   

4.
In this paper, a three-dimensional numerical heat transfer analysis has been performed in order to obtain the temperature distribution and the fin efficiency using the experimentally determined local heat transfer coefficients from the naphthalene sublimation technique and heat and mass transfer analogy. The influences of the fin material, fin thickness, and transversal tube pitch on the fin efficiency are studied for flat tube bank fin heat exchangers. The fin efficiency, obtained by a numerical method using the averaged heat transfer coefficient, is compared with that using the local heat transfer coefficient. The reliability of the generally used formula for fin efficiency is tested also, and then a modified fin efficiency formula with a new equivalent fin height is provided. The results show that the difference between the fin efficiency obtained by the numerical method using the local heat transfer coefficient and the fin efficiency using the averaged heat transfer coefficient is small, but the fin efficiency obtained by the generally used formula is lower than that obtained by the numerical method using the local heat transfer coefficient; the fin efficiency obtained by the modified formula matches very well with the fin efficiency obtained by the numerical method using the local heat transfer coefficient. The modified formula for the fin efficiency calculation is more reliable, and it can be applied directly to the design of a flat tube bank fin heat exchanger and also will be useful in engineering applications.  相似文献   

5.
The louvered fin heat exchanger, a type of compact heat exchanger, has been used heavily in the automotive and air conditioning industries for the last several decades. The majority of past research, aimed towards improving louvered fin exchanger efficiency, has focused on optimizing various parameters of the louvered fin. The experimental study presented in this paper concentrates instead on augmenting the heat transfer along the tube wall of the compact heat exchanger through the use of winglets placed on the louvers. The experiments were completed on a 20 times scaled model of an idealized louvered fin exchanger with a fin pitch to louver pitch ratio of 0.76 and a louver angle of 27°. The Reynolds numbers tested, based on louver pitch, were between 230 and 1016. A number of geometrical winglet parameters, including angle of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation, friction factor augmentation, and efficiency index (combination of both augmentations). In an attempt to optimize these winglet parameters, tube wall heat transfer augmentations as high as 39% were achieved with associated friction factor augmentations as high as 23%.  相似文献   

6.
利用低气压环境模拟装置对开缝翅片管换热器在不同气压下的换热性能进行实验研究.研究结果表明:随着气压不断降低,换热器周围空气密度逐渐降低,换热器空气侧换热系数以及显热换热量逐渐降低,而空气含湿量随着气压降低逐渐升高,导致潜热换热量逐渐增加;当气压降至0.058 MPa以下时,换热器空气侧潜热换热量占主要部分,当气压为0.04 MPa时,换热器换热能力与常压下相比下降了36.63%.  相似文献   

7.
《Applied Thermal Engineering》2007,27(2-3):539-544
The Taguchi method is a well-known parametric study tool in engineering quality and experimental design. This study analyzes five experimental factors (flow depth, ratio of fin pitch and fin thickness, tube pitch, number of louvers and angle of louver) affecting the heat transfer and pressure drop of a heat exchanger with corrugated louvered fins using the Taguchi method. Fifteen samples are selected from experimental database and the heat transfer and flow friction characteristics are analyzed. The results show that flow depth, ratio of fin pitch and fin thickness and the number of the louvers are the main factors that influence significantly the thermal hydraulic performance of the heat exchanger with corrugated louvered fins. Therefore, these three factors are considered as the main factors for an optimum design of a heat exchanger.  相似文献   

8.
《Applied Thermal Engineering》2002,22(12):1403-1415
In large-scale applications such as arrays of axial fans in air-cooled heat exchanger systems, edge–proximity and wind-induced cross-flow may decrease the flow through some fans by causing the flow to enter them at off-axis angles. In this study, such off-axis inflows were introduced by inserting inlet pipe sections between the plenum chamber of a standard test facility and one of three different scale model test fans of 1542 mm diameter. Fan power consumption turned out to be completely independent of off-axis inflow angle up to 45°. Fan total-to-total pressure rise was found to be independent of off-axis inflow angle, and the decrement in fan pressure rise was equal to the dynamic pressure based on the cross-flow velocity component at the fan inlet. Analysis showed that for model fans to represent the cross-flow behaviour of their prototypes, they should have the same ratio of dynamic pressure to pressure rise, and the same dimensionless characteristic slope at their operating points. The performance of a row of fans operating at off-axis inflow conditions representing a cooling system was well predicted by a simple model assuming that the fans farther from the edges induce cross-flows over the fans closer to the edges.  相似文献   

9.
A total of 23 cross-flow heat exchangers having crimped spiral configurations is studied. The effect of tube diameter, fin spacing, transverse tube pitch, and tube arrangements are examined. For the inline arrangement, the pressure drop increases with the rise of tube diameter but the associated heat transfer coefficient decreases with it. The increase of fin height also gives rise to considerable increase of pressure drop and decrease of heat transfer coefficients for the inline arrangement. However, for the staggered arrangement, the effect of the fin height on the pressure drop is much smaller than that of the inline arrangement due to the major contribution to the total pressure drops from the blockage of the airflow from staggered arrangement. Effect of the fin spacing on the air side performance is strongly related to the transverse tube pitch for both inline and staggered arrangements. Correlations of the present crimped spiral fins in both staggered and inline arrangements are developed. The proposed correlations give fairly good predictive ability against the present test data.  相似文献   

10.
A rational approach to the design of gas-fired finned tube heat exchangers is presented. As a result of an extensive literature search and a study of flue gas properties, novel equations have been developed to facilitate design procedures. Comparisons are made between the theoretical performance of a finned tube boiler and those determined experimentally.  相似文献   

11.
Fouling is one of the main problems of heat transfer which can be described as the accumulation on the heat exchanger tubes, i.e.; ash deposits on the heat exchanger unit of the boiler. A decrease in heat transfer rate by this deposition causes loss in system efficiency and leads to increasing in operating and maintenance costs. This problem concerns with the coupling among conduction heat transfer mode between solid of different types, conjugate heat transfer at the interface of solid and fluid, and the conduction/convection heat transfer mode in the fluid which can not be solved analytically. In this paper, fouling effect on heat transfer around a cylinder in cross flow has been studied numerically by using conjugate heat transfer approach. Unlike other numerical techniques in existing literatures, an unstructured control volume finite element method (CVFEM) has been developed in this present work. The study deals with laminar flow where the Reynolds number is limited in the range that the flow field over the cylinder is laminar and steady. We concern the fouling shape as an eccentric annulus with constant thermal properties. The local heat transfer coefficient, temperature distribution and mean heat transfer coefficient along the fouling surface are given for concentric and eccentric cases. From the results, we have found that the heat transfer rate of cross-flow heat exchanger depends on the eccentricity and thermal conductivity ratio between the fouling material and fluid. The effect of eccentric is dominant in the region near the front stagnation point due to high temperature and velocity gradients. The mean Nusselt number varies in asymptotic fashion with the thermal conductivity ratio. Fluid Prandtl number has a prominent effect on the distribution of local Nusselt number and the temperature along the fouling surface.  相似文献   

12.
13.
In this study, copper foam was used as a porous medium in place of traditional aluminum fins. A comparison between the two heat exchangers—one with fins and the other with copper foam—was conducted under various conditions. The air inlet velocity ranged from 0.9 to 9.3 m/s, and the water inlet temperature ranged from 10°C to 18°C. Different water flow rates were tested. A comparison was made between the performance of copper foam and aluminum fins by calculating several parameters, including thermal resistance, heat exchanger effectiveness, Colburn factor, Nusselt number, friction factor, and area goodness factor (AG). The experimental results showed that at low air velocities, the heat transfer coefficient for both types of heat exchangers was almost equal. However, at high air velocities, the copper foam exhibited a higher heat transfer coefficient. The Colburn factor was higher for the heat exchanger with copper foam than in the conventional fins, where it was equal to 0.1959 for the copper foam and 0.1186 for the fins. On the other hand, the AG was higher in the case of fins than in the heat exchanger with copper foam.  相似文献   

14.
纪律  李斌 《节能》2010,29(11):29-32
同时对普通翅片管和带有两个短肋的翅片管在均匀流场中、不同雷诺数下进行了流场和传热的数值模拟,分析了带有短肋的翅片管强化传热的机理。结果表明,由于翅片上带有的短肋和短肋后面的开孔,减少了翅片管管后流动的死滞区,提高了局部地区流体的流速,增加了扰动,从而起到了强化传热的作用。取入口雷诺数为20000时,加装短肋后可使总传热量增加5.1%,平均表面传热系数增加23.56%。随着雷诺数的增加,总换热量增加,强化传热效果也增强。  相似文献   

15.
A mathematical model is proposed to evaluate the frosting behavior of a fin–tube heat exchanger under frosting conditions. Empirical correlations of the heat transfer coefficients for the plate and tube surfaces and a diffusion equation for the frost layer are used to establish the model. The correlations for the heat transfer coefficients, derived from various experimental data, were obtained as functions of the Reynolds number and Prandtl number. The proposed model is validated by comparing the numerical results with experimental data for the frost thickness, frost accumulation, and heat transfer rate. The numerical results agree well with the experimental data. It is also found that this model can be applied to evaluate the thermal performance of a common fin–tube heat exchanger under frosting conditions.  相似文献   

16.
The experimental study, thermal performance, and pressure drop of single-walled carbon nanotube (SWCNT) and graphene quantum dot (GQD) nanofluids in shell and tube heat exchanger with fin blade tubes are evaluated. The effects of the working fluid (water) volume flow rates (V̇= 2.5–10 L/min), volume concentration of nanoparticles (ω= 0.0%, 1%, 3%, and 5%), Reynolds number of working fluid (Re = 850–3300), and tube building (heat exchanger with fin blade tubes and without fin blade tube) have been analyzed. Results represent that with augmentation of volume concentration of SWCNT nanoparticle up to 1%, heat transfer rate increases by ∼5% and then up to 5% volume concentration of SWCNT nanoparticle decreased about 17%, also this calculation for GQD nanoparticle conducted and results represented decreasing 6% and approximately unchanged heat transfer rate, respectively. With regard to obtained results, heat transfer rate of heat exchanger can be improved by using the fin blades by 188%, compered without fin blade heat exchanger also most related increase for pressure drop of heat exchanger was recorded about 80% for 5% SWCNT of nanofluid. At the end, the mean enhancement in effectiveness of heat exchanger with various concentrations of SWCNT and GQD nanofluids and using the fin blades is about over 100% and 85%, respectively. In fact, the present study shows that applying the new finned tubes in the heat exchanger has more impact, related to the mentioned nanoparticles on the thermal properties of heat exchanger.  相似文献   

17.
Thermal modeling and optimal design of compact heat exchangers are presented in this paper. ε–NTUεNTU method was applied to estimate the heat exchanger pressure drop and effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length and hot stream flow length were considered as six design parameters. Fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) was applied to obtain the maximum effectiveness and the minimum total annual cost (sum of investment and operation costs) as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called ‘Pareto optimal solutions’. The sensitivity analysis of change in optimum effectiveness and total annual cost with change in design parameters of the plate fin heat exchanger was also performed and the results are reported. As a short cut for choosing the system optimal design parameters the correlations between two objectives and six decision variables with acceptable precision were presented using artificial neural network analysis.  相似文献   

18.
基于列管式换热器具有传热面积大、结构紧凑、操作弹性大等优点,使其在相变储能领域具有广阔的应用前景。本文建立一种新型列管式相变蓄热器模型,在不考虑自然对流的情况下,利用Fluent软件对相变蓄热器进行二维储热过程的数值模拟。本文主要研究斯蒂芬数、雷诺数、列管排列方式、肋片数以及相变材料的导热系数对熔化过程的影响,并对熔化过程中固液分界面的移动规律进行了分析。模拟结果表明,内肋片强化换热效果明显,特别是对应用低导热系数相变材料[导热系数小于1 W/(m·K)]的列管式蓄热器,相对于无肋片结构,加入肋片(Nfn=2)可缩短熔化时间52.6%。  相似文献   

19.
The focus of this paper is to optimize the air-side performance of a wavy fin and tube heat exchanger at different design parameters on an individual target response using the Taguchi method. However, a statistical concept, gray relational analysis, is also studied for combined optimization, considering all target responses at a time. Based on the heat exchanger requirement, parametric study for the air-side is regarded as a more significant heat transfer and lower frictional factor. Experimental correlations were available and used for the 27 orthogonal runs. Investigation revealed the highest 47.06% fin pitch, 37.24% fin pitch, 25.46% air velocity, and 23.9% fin thickness contribution ratio for the target response of friction factor (TPF), heat transfer coefficient, and Colburn factor, respectively, with the application of the Taguchi method in a heat exchanger. GRG gives an optimum set of design parameters, A3B3C2D1E3F2G1, for wavy fin and tube of fin pitch of 6 mm, tube row number of 6, waffle height 1.8 mm, fin thickness 0.12 mm, and air velocity 5 m/s. Also, longitudinal tube pitch is 27.5 mm, and transverse tube pitch of 24.8 mm, at which TPF is maximum while the friction factor is minimal. The Colburn factor is the most significant, minor friction factor, and the heat transfer coefficient and TPF are the most considerable in GRG. Hence, an improved heat transfer performance design of a wavy fin and tube heat exchanger is achieved using the above techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号