首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental investigation of the thermodynamic performance of a counter-flow spray humidifier was conducted on the basis of theoretical analysis of the heat and mass transfer mechanism inside the humidifier. Critical parameters such as the temperature and relative humidity of air and the temperature of water at the inlet and outlet were measured. The influence of every measured parameter on the thermal performance of the humidifier was obtained under different experimental conditions. The cooling number, whose variation was also obtained, was calculated according to the measured data. The experimental results show that both the temperature and the temperature increment of outlet humid air and the temperature of outlet water increase with an increase of the water-gas ratio, whereas the cooling number decreases. Under all experimental conditions, the outlet humid air reaches or is close to the saturation level. The lower cooling number is favorable for the system, but it has an optimal value for a certain humidifier. __________ Translated from Journal of Power Engineering, 2006, 40(9): 1263–1267 [译自: 动力工程]  相似文献   

2.
An experiment investigation of inner two-phase flow in the counter-flow spray saturator (CFSS) for humid air turbine (HAT) cycle and the simulation of the moving distance of water droplets in counter-flow air are presented here aimed at the understand of two-phase flow in the CFSS in detailed. Dual phase Doppler anemometry (DualPDA) system is applied to obtain the spatial change of the droplet size spectrum in the flow-field to correlate droplet size–velocity correlation. The local measurement profiles of 3D mean velocities and diameters of water droplets are obtained by averaging droplet size classes. Moreover, DualPDA signal processing allows for accurate determination of the volume flux of spherical water droplets. The transient velocity fields are measured by a laser-based particle image velocimetry (PIV) system. The commercial CFD software, FLUENT, is used to simulate the maximum moving distance of water droplets with different diameters and inlet velocities in the counter-flow air with different inlet velocities, then the quantity of water droplet entrainment in the saturator can be estimated.  相似文献   

3.
Thermodynamic studies of a HAT cycle and its components   总被引:1,自引:0,他引:1  
The electric power grid contains more and more renewable power production such as wind and solar power. The use of renewable power sources increases the fluctuations in the power grid which increase the demand for highly efficient, fast-starting power-producing units that can cope with sudden production losses. One of the more innovative power plant cycles, that have the potential of competing with conventional combined power plants in efficiency but has a higher availability and faster start up time, is the Evaporative Gas Turbine (EvGT) or Humid Air Turbine (HAT). A thermodynamic evaluation of different HAT cycle layouts has been done in this paper. Each layout is evaluated separately which makes it possible to study different components individual contribution to the efficiency and specific power. The thermodynamic evaluation also shows that it is important to look at different cool-flow extracting positions. The effect of water temperature entering the cycle, called make-up water, and where it is introduced into the cycle has been evaluated. The make-up water temperature also affects the optimal pressure level for intercooling and it is shown that an optimal position can be decided considering design parameters of the compressor and the water circuit.  相似文献   

4.
在分析饱和器内的传热传质过程基础上,建立了一维数学模型,并通过引入广义传质系数CC,简化了饱和器的计算过程。经实验验证表明该模型具有较好的精度,可以比较准确的模拟饱和器内加湿过程,并且对含有填料的饱和器也具有通用性。通过计算得到的饱和器性能曲线图对设计和研究饱和器工作性能和传热传质规律有较大帮助。  相似文献   

5.
The numerical simulations of simultaneous heat and mass transfer process in the counter-flow spray saturator and humid air turbine cycle are carried out in this work, according to the experimental conditions and actual size of a prototype saturator. This humidifying process involves two-phase flow of air and water droplets, also including interaction, breakup and collision of water droplets. Eulerian approach is used for gas phase flow, Lagrangian approach is used for liquid phase flow, and the two-way coupling is used between two phases. The simulations agree well with the experimental measurements. The simulations show the flow is with high turbulence intensity, the relative humidity and temperature of humid air increase along with the height of saturator, some water droplets carried by air escape from the saturator, and the humid air is mainly humidified at the lower part of saturator and is simultaneously humidified and heated at the upper part.  相似文献   

6.
《Energy》1998,23(11):943-947
Results are presented in terms of tower characteristics, water-outlet temperature, water to air flow rate ratio (L/G ratio) and efficiency. Tower performance decreases with an increase in the L/G ratio as is also observed in other types of cooling towers.  相似文献   

7.
饱各器是HAT循环中的关键部件,对其性能的认识关系到整个系统的性能分析。由于饱和器内存在复杂的气液两相流动和相互间的传热质过程,其性能与很多参数有关,因此用一个或多个指标从一个或多个方面来评价饱和器性能问题一直是在研究的问题。本文使用了分析的方法,建立了饱和器衡模型,分析了内部损失,提出了性能评价的方法和4个评价指标:热力学完善度、效率、损系数和流密度变化率,通过这些评定准则可以对饱和器用能水平作出评价,为今后饱和器的设计和性能分析提供了参考。  相似文献   

8.
建立了考虑涡轮叶片冷却和实际气体性质的中冷回热循环三轴燃气轮机模型,在给定叶片表面耐热温度的条件下通过优化总压比和中间压比分配,得到最优性能。研究表明:分别存在最佳的总压比和中间压比使得燃气轮机循环的比功率和效率达到双重最大值,双重最大比功率随中冷度的增大而增大,随回热度的增大略有减小,双重最大效率随中冷度和回热度的增大而增大。  相似文献   

9.
An analytical model was developed to describe thermodynamically the water evaporation process inside a counter‐flow wet cooling tower, where the air stream is in direct contact with the falling water, based on the implementation of the energy and mass balance between air and water stream describing thus, the rate of change of air temperature, humidity ratio, water temperature and evaporated water mass along tower height. The reliability of model predictions was ensured by comparisons made with pertinent experimental data, which were obtained from the literature. The paper elaborated the effect of atmospheric conditions, water mass flow rate and water inlet temperature on the variation of the thermodynamic properties of moist air inside the cooling tower and on its thermal performance characteristics. The analysis of the theoretical results revealed that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air wet bulb temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. The change of inlet water temperature does not affect seriously the thermal behaviour of the cooling tower. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Numerical simulations and experimental tests were carried out to study the fluid flow and heat transfer characteristics for a rectangular-shaped microchannel heat exchanger. Moreover, influences of gravity to heat transfer and pressure drop behaviors of the microchannel heat exchanger were presented by variation of the physical inclinations of the microchannel heat exchanger system used for experiments. For experimental results, a heat flux of 17.4 W/cm2 was achieved for the heat exchanger. Besides, the results obtained for the actual effectiveness and for the effectiveness (the so-called effectiveness-NTU method) were determined. In this study, the pressure drop decreases as the water temperature rises. As the pressure drop increases from 880 to 4400 Pa, the mass flow rate increases from 0.1812 to 0.8540 g/s. In addition, the results obtained from numerical analyses were in good agreement with those obtained from experiments, with discrepancies of the heat transfer coefficient estimated to be less than 9%.  相似文献   

11.
This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.  相似文献   

12.
The cooling capacity and cooling load of a fuel-cell cooling loop govern the operating temperature of the fuel-cell module and its electrical output, efficiency and other thermodynamic aspects. The aim of this work was to analyze the performance of a polymer-electrolyte-membrane fuel-cell (PEMFC) under changing cooling conditions. A back-iteration algorithm was employed to determine the operating temperature of a PEMFC for which thermodynamic performance models were developed for the entropy generation, exergy-destruction and second-law efficiency using an entropy-analysis method. Electrochemical equations for the calculation of the voltage, power and first-law efficiency of the cell were also formulated. A parametric study was performed to evaluate the effects of varying cooling conditions on the energy and exergy efficiency of the PEMFC. The parameters considered include the electric-current density governing the cooling load, the mass flow rate of the coolant and the external thermal resistance of the cooler, which together determine the cooling ability of the fuel-cell cooling loop. Their influences on operating temperature, voltage, power, energy and exergy efficiencies were numerically investigated. The results indicate that although the power output and exhaust heat of PEMFC is mainly dominated by the electric-current density, the impacts of the coolant's mass flow rate and the cooler's external thermal resistance on the voltage, energy and exergy efficiencies of PEMFC module can't be neglected. In the investigated ranges, the gross energy and exergy efficiencies increase with the cooler's external thermal resistance by 3.2% and 2.45%, and decrease with the increase in coolant's mass flow rate by 1.2% and 0.92%, respectively.  相似文献   

13.
The combination of ionic liquid-refrigerant based [EMIM][DMP]-H2O as an alternative working pair for single effect vapor absorption cycles (VACs) is assessed and optimized by using energy and exergy based performances. Thermodynamics properties of binary mixture of [EMIM] [DMP]-H2O like Dühring's (P-T-x1) and h-T-X1 plots are computed from the activity coefficient based non-random two-liquid model (NRTL) model. Further modeling and simulation of VACs are accomplished in open source Scilab as mathematical programing software and used to ascertain the optimal generator temperature established on energetic and exergetic COP. Optimal results include an extensive range of temperatures like Te from 2.5 to 15°C and Ta and Tc from 30 to 45°C. Simulation of the single effect VAC with SHE by using [EMIM][DMP]-H2O mixture at Te = 10°C, Tg = 100°C, Ta = 30°C, and Tc = 40°C were evaluated and compared with the 5 working fluids. Simulation outcomes depicted greater COP of 0.82 for [EMIM][DMP]-H2O in comparison with NH3-H2O, EMISE-H2O, [EMIM][BF4]-H2O and nearly equal to LiBr-H2O (COP = 0.83). In addition, the effect of Tg on the COP, ECOP f , and composition are compared and optimized for the evaporation temperature range from 2.5 to 15°C, Ta/Tc from 30 to 45°C and cooling water (CW) flow in series and parallel. Additionally, the optimal Tg exhibited distinction based on energy and exergy analysis. Thus, it resulted in optimized performances of [EMIM] [DMP]-H2O that can be suitable to replace corrosive aqueous LiBr in VACs.  相似文献   

14.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
R-134a spray as it impinges on the flat endplate of a circle is studied experimentally. In order to optimize R-134a spray cooling efficiency, a detailed characterization and understanding of liquid spray formation is essentially needed. An optical image system was used to quantify the spray flow structure. LDV measurements were used to characterize the local velocity /and velocity fluctuation distribution from a commercial available nozzle in both axial and radial directions. The radial velocity are found to be the largest at the outer edges of the spray, and they continuously decrease across the spray toward the center axis; while the corresponding axial velocity is the maximum there. Moreover, spray heat transfer in non-boiling regime was shown to be dependent on the velocity of the impinging spray in terms of Weber number and other related parameters which are in good agreement with those of previous studies.  相似文献   

16.
HAT循环构成热电冷三联产总能系统的可行性分析   总被引:1,自引:0,他引:1  
对国内外在提高能源利用率方面的研究现状和发展趋势进行了综述,在前人研究的基础上提出以湿空气透平湿空气透平(HAT)循环构成热、电、冷三联产总能系统的能量利用形式,详细分析了构成该系统的相关技术、可行性及需要加以解决的几个问题。  相似文献   

17.
Heat transfer characteristics of spray cooling in a closed loop   总被引:2,自引:0,他引:2  
A closed loop spray cooling test setup is established for the cooling of high heat flux heat sources. Eight miniature nozzles in a multi-nozzle plate are used to generate a spray array targeting at a 1 × 2 cm2 cooling surface. FC-87, FC-72, methanol and water are used as the working fluids. Thermal performance data for the multi-nozzle spray cooling in the confined and closed system are obtained at various operating temperatures, nozzle pressure drops (from 0.69 to 3.10 bar) and heat fluxes. It is exhibited that the spray cooler can reach the critical heat fluxes up to 90 W/cm2 with fluorocarbon fluids and 490 W/cm2 with methanol. For water, the critical heat flux is higher than 500 W/cm2. Air purposely introduced in the spray cooling system with FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface.  相似文献   

18.
Natural convection heat transfer from a heated cylinder contained in a square enclosure filled with water–Cu nanofluid is investigated numerically. The main objective of this study is to explore the influence of pertinent parameters such as Prandtl number (Pr) and diameter (D) of the heated body on the flow and heat transfer performance of nanofluids while Rayleigh number (Ra) and the solid particle volume fraction (?) of nanoparticle are considered fixed. The results obtained from finite element method clearly indicate that heat transfer augmentation is possible using highly viscous nanofluid resulting in the compactness of many industrial devices.  相似文献   

19.
根据热力学基本原理,提出一种新的估算复杂热力循环性能的方法-系统修正法,并据此推导了空气湿化燃气轮机循环的性能估算公式。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号