首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hydrogen on electrochemical behavior and susceptibility of stress corrosion cracking (SCC) of pure copper were studied. SCC susceptibility of pure copper in a 1 M NaNO2 solution was increased by pre-charged hydrogen. The effect of hydrogen on the susceptibility is more obvious in the low stress region due to the longer fracture time, which resulted in a longer time for more hydrogen to diffuse toward the crack tip. Synergistic effects of hydrogen and stress on corrosion and SCC processes were discussed. The results showed that an interaction between stress and hydrogen at the crack tip could increase the anodic dissolution rate remarkably.  相似文献   

2.
基于慢应变速率拉伸实验(SSRT),采用恒电流极化、电化学噪声(ECN)与电化学阻抗(EIS)等方法,研究7A04铝合金在3.5%(质量分数)NaCl水溶液中的应力腐蚀开裂(SCC)行为以及Ce~(3+)对其SCC的缓蚀作用,探讨Ce~(3+)对裂纹孕育与发展过程的抑制机理。结果表明:无论是阳极还是阴极极化,均会促进7A04的SCC倾向,前者增加了裂尖的阳极溶解,后者则加速了裂尖的氢脆效应。Ce~(3+)的加入能延缓7A04的SCC断裂时间,但其有效性仅限于裂纹的萌生阶段。由于Ce~(3+)能够抑制铝合金表面的亚稳态点蚀发育和长大,因而使裂纹的孕育时间显著延长,降低了SCC的敏感性。不过一旦裂纹进入扩展阶段或者试样表面有预裂纹,则由于Ce~(3+)很难迁移到裂纹尖端或在裂尖区难以成膜,不能对裂纹的生长起到有效抑制作用,因而无法降低7A04的SCC发展速率。SEM分析表明7A04铝合金光滑试样SCC主要源于亚稳态或稳态点蚀的诱导作用。  相似文献   

3.
Mechanisms of dissolvent anodic chemical reaction and hydrogen embrittlement have been proposed as stress corrosion cracking (SCC) mechanisms. The former is feasible for the case of plastic deformation dominant metals (low-yield stress), and the latter is for high-strength metals such as high-strength steels. However, in spite of low-yield stress, a discontinuous cleavage-like fracture is sometimes observed during SCC for ductile fcc alloys, which concerns the interaction between dislocations and the hydrogen cluster. The problem of when these mechanisms will be dominant remains. In this paper, the stress corrosion cracking model on the basis of hydrogen diffusion and concentration toward the elastic-plastic stress field around a crack and the interaction of dislocations and hydrogen around a crack tip are proposed to clarify the mechanism of stress corrosion cracking for ductile and brittle materials. We conducted numerical analyses using these proposed models.  相似文献   

4.
Mechanisms of dissolvent anodic chemical reaction and hydrogen embrittlement have been proposed as stress corrosion cracking (SCC) mechanisms. The former is feasible for the case of plastic deformation dominant metals (low-yield stress), and the latter is for high-strength metals such as high-strength steels. However, in spite of low-yield stress, a discontinuous cleavage-like fracture is sometimes observed during SCC for ductile fcc alloys, which concerns the interaction between dislocations and the hydrogen cluster. The problem of when these mechanisms will be dominant remains. In this paper, the stress corrosion cracking model on the basis of hydrogen diffusion and concentration toward the elastic-plastic stress field around a crack and the interaction of dislocations and hydrogen around a crack tip are proposed to clarify the mechanism of stress corrosion cracking for ductile and brittle materials. We conducted numerical analyses using these proposed models.  相似文献   

5.
It has been acknowledged that hydrogen plays a critical role in near-neutral pH stress corrosion cracking (SCC) of pipelines. However, the accurate mechanism for hydrogen involvement remains unknown. This work reviewed the applications of various electrochemical techniques towards understanding near-neutral pH SCC. The techniques reviewed include electrochemical hydrogen permeation, cyclic voltammetry, electrochemical impedance spectroscopy, electrochemical noise and scanning photo-electrochemical microscopy. The manner by which these techniques allow for the investigation of the hydrogen evolution mechanism, adsorption/desorption and permeation kinetics and hydrogen diffusion and accumulation in steel as well as the interactions between hydrogen, anodic dissolution and stress at crack tip in near-neutral pH environmental condition is described. It is anticipated that the advanced electrochemical measurement techniques provide essential tools to investigate the mechanistic aspects on hydrogen involvement in near-neutral pH stress corrosion cracking in pipelines.  相似文献   

6.
Summary Electrochemical characteristics have been measured at crack tips during tests on rectangular specimens having edge cracks, which are used for stress corrosion cracking tests in pure bending, where studies have been made on how the pH and electrode potential vary at the tip of a growing crack as a function of the number of loading cycles and the interaction time; measurements have been made on the initial pH at the tip of a stress corrosion crack, the steel composition, the loading frequency, and the oxygen concentration. Estimates are made of how those factors affect the rate of hydrogen depolarization at the tip, which governs the hydrogen embrittlement there.Translated from Fiziko-khimicheskaya Mekhanika Materialov, Vol. 27, No. 1, pp. 17–26, January–February, 1991.  相似文献   

7.
Stress corrosion cracking fracture mechanisms in rock bolts   总被引:1,自引:0,他引:1  
Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip.The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms.The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms.The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again.  相似文献   

8.
通过拉伸性能测试、C环应力腐蚀试验、金相分析、扫描电镜和透射电镜观察等研究了7055铝合金T型型材的应力腐蚀开裂(SCC)行为.结果表明:7055铝合金T型型材纵向试样的抗拉强度、屈服强度、伸长率及断面收缩率均大于横向试样的;在间浸腐蚀和恒温恒湿环境下,纵向C环试样的开裂时间均长于横向试样的.型材纵向截面晶粒变形特征明...  相似文献   

9.
Inclined high pH stress corrosion cracking (SCC) is a type of intergranular environmental cracking in gas pipelines, which differs from typical SCC by propagating at an angle from the wall direction. Investigations of Australian and Canadian inclined SCC colonies have not provided a clear indicator of a cause for the abnormal crack growth direction. This paper addresses the possibility of crack tip strain enhanced electrochemistry causing the inclination. Potentiodynamic tests were conducted to quantify the influence of strain on the electrochemistry, and strain was found to increase current density up to 300% in the SCC region. A model was developed that incorporates crack tip strain driven SCC growth, which showed good agreement with field grown cracks, and the aspect ratio of the grains was shown to have an effect on the inclination angle. The results indicate that crack tip strain enhanced electrochemistry is a plausible cause for inclined SCC.  相似文献   

10.
The stress corrosion cracking (SCC) of AISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).  相似文献   

11.
As the failures of orthopedic devices due to stress corrosion cracking (SCC) have become more frequent nowadays, research on this area also has become popular. Many published articles show the basic characterizations and evaluations of the SCC performed based on ASTM standards by using the C-ring sample. This paper discusses stress redistribution during SCC testing. The results show that the stress versus displacement equation presented in the standard is erroneous as the specimen begins to crack. It is only true for a non-cracked specimen. As the crack propagates, the sharpness of the crack tip minimizes the validity of the equation, even when the thickness reduction is taken into account.  相似文献   

12.
The internal stress induced by a porous layer or passive layer can assist the applied stress to promote dislocation emission and crack propagation, e.g. when the pipeline steel is buried in the soil containing water, resulting in stress corrosion cracking (SCC). Molecular dynamics (MD) simulation is performed to study the process of dislocation emission and crack propagation in a slab of Fe crystal with and without a porous layer on the surface of the crack. The results show that when there is a porous layer on the surface of the crack, the tensile stress induced by the porous layer can superimpose on the external applied stress and then assist the applied stress to initiate crack tip dislocation emission under lowered stress intensity KI, or stress. To respond to the corrosion accelerated dislocation emission and motion, the crack begins to propagate under lowered stress intensity KI, resulting in SCC.  相似文献   

13.
This paper is concerned with an accelerated testing and modeling of stress corrosion cracking (SCC) phenomena in pipe grade steels in near neutral pH environment. In modeling of SCC, the authors adopt the crack layer theory that provides formalism to account for contributions to crack growth rate such processes as electro-chemical corrosion, hydrogen embrittlement and mechanical loading. Special attention is paid to the hydrogen diffusion, a precursor to hydrogen embrittlement. The energy-momentum tensor (Eshelby's tensor) is employed to evaluate the thermodynamic forces responsible for SC crack growth. Griffith' crack equilibrium condition is used to derive a quasi-equilibrial SC crack growth equation. A parametric study and comparison with the experimental results of corrosion fatigue tests for various maximal stress, stress ratio and electric potential are performed to examine the validity of the proposed model.  相似文献   

14.
Stress corrosion cracking (SCC) is an important failure mechanism for oil and gas pipelines. In the past, hydrostatic testing has been frequently used to assess and mitigate stress corrosion cracking. It is commonly agreed that an effective hydrostatic test not only eliminates critical crack-like flaws, but also blunts the sub-critical crack tip thereby suppressing further SCC propagation. However, little study has been done on the plastic deformation that results from the high stress intensity at the crack tip due to hydrostatic testing pressure and its possible role in subsequent SCC propagation. In this study, microstructural details were examined of an API 5L X52 SCC-containing pipe removed from field service. Plastic deformation generated by the hydrostatic testing pressure was revealed by using high-resolution imaging of a focused ion beam (FIB) microscope. The existence of the microscopic plastic zones around some crack tips suggests that caution should be taken when setting up pipeline hydrostatic tests.  相似文献   

15.
The effects of stress ratio and microstructure on fatigue crack growth rate in air and natural seawater were investigated for pure titanium and its weld metal. The corrosion fatigue characterization of pure titanium was also studied under a cathodic potential in natural seawater. In air, the fatigue crack growth rates of pure titanium and its weld metal increased with increasing stress ratio. In natural seawater, the effect of stress ratio was similar to that in air. However, the crack growth rates were greater for pure titanium than for the weld metal. These results indicate that the corrosion action is sensitive to the microstructure in front of the crack tip. When the crack growth rate for the weld metal was plotted using the effective stress intensity factor range, the crack growth rate in natural seawater was coincident with that in air, regardless of stress ratio. For the base metal, there is a significant difference in the crack growth rate between natural seawater and air.  相似文献   

16.
The systematic laboratory studies on the roles of sulfate-reducing bacteria(SRB) in the stress corrosion cracking(SCC) susceptibility of X80 steel subjected to cathodic potential have been conducted in a nearneutral pH soil solution by slow strain rate tests.The cathodic potential and SRB increase individually the SCC susceptibility of the steel in the soil solution.The positive role of the SRB activities in SCC susceptibility depends on the prolongation of pre-incubation time,and the SCC susceptibility of the steel increases under more negative potentials.What’s more,the applied potentials and the presence of SRB work together in promoting the SCC susceptibility of the steel.But,the combined action becomes limited with decreasing cathodic potentials.The relationships between the plasticity loss and the permeable hydrogen concentration were established for the steel in the soil solution,regardless of under open circuit potential or cathodic potentials,in both the sterile and SRB inoculated conditions.The relationships are practically significant for the selection of safe cathodic protection(CP) potentials in the presence of SRB in soil environment.  相似文献   

17.
Duplex stainless steel (DSS) grades are used in pulp mills for their superior properties and resistance to general corrosion. However, stress corrosion cracking (SCC) of DSS equipment has been experienced in different pulp mills. The susceptibility of DSS grades to SCC can be mainly attributed to the various heating processes involved during the manufacturing of industrial equipments, especially welding. It is generally understood that heating cycles during welding may affect the dual microstructure (ferrite/austenite ratio) of the steel, making it more prone to cracking in aggressive environments such as chlorides and caustics and further exposure to high temperatures. Welded 2205 DSS failed in white liquor (mainly NaOH + Na2S) was examined for SCC crack morphology and microstructure. Heat-treated 2205 DSS samples were tested in simulated white liquor to see the effect of microstructure on SCC susceptibility. Austenite is more susceptible to SCC than ferrite, but the SCC susceptibility primarily depends on the composition of the alloy and the chemistry of the exposure environment.  相似文献   

18.
The stress corrosion cracking (SCC) of austenitic stainless steel was studied via polarization, slow strain rate and scanning electron microscope (SEM) techniques. Many SCC mechanisms have been proposed in which hydrogen embrittlement and passive film rupture-repassivation theories are generally accepted, but they can hardly explain the SCC mechanism of austenitic stainless steel in acidic chloride solution adequately, because the steel is in active dissolution state and cathodic polarization can prevent it from occurring. Our experiment shows that the anodic current increases the creep rate and decreases the plastic strength of the material on single smooth specimen as well as at the SCC crack tip. The fractured surface was characterized as brittle cleavage, while the surface crack of smooth specimen was almost vertical to the tensile strength, which can confirm that the cracks were caused by tensile stresses. A fracture probability competition mechanism of SCC was proposed on the basis of the experimental results combined with the viewpoint of ductile-brittle fracture competition. When the anodic dissolution current is increased to a certain degree, the probability of fracture by tensile stress will exceed that by shear stress, and the brittle fracture will occur. The proposed SCC mechanism can riot only explain the-propagation of SCC cracks but can explain the crack initiation as well. The strain on the surface distributes unevenly when a smooth specimen is deformed, so does the anodic current distribution. The crack will initiate at a point where the anodic current density is large enough to cause the material at a specific point to fracture in brittle manner.  相似文献   

19.
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen.All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.  相似文献   

20.
In situ atomic force microscope (AFM) imaging of the fatigue and stress corrosion (SC) crack in a high‐strength stainless steel was performed, under both static and dynamic loading. The AFM systems used were (1) a newly developed AFM‐based system for analysing the nanoscopic topographies of environmentally induced damage under dynamic loads in a controlled environment and (2) an AFM system having a large sample stage together with a static in‐plane loading device. By using these systems, in situ serial clear AFM images of an environmentally induced crack under loading could be obtained in a controlled environment, such as in dry air for the fatigue and in an aqueous solution for the stress corrosion cracking (SCC). The intergranular static SC crack at the free corrosion had a sharp crack tip when it grew straight along a grain boundary. The in situ AFM observations showed that the fatigue crack grew in a steady manner on the order of sub‐micrometre. The same result was obtained for the static SC crack under the free corrosion, growing straight along a grain boundary. In these cases, the crack tip opening displacement (CTOD) remained constant. However, as the static SC crack was approaching a triple grain junction, the growth rate became smaller, the CTOD value increased and the hollow ahead of the crack tip became larger. After the crack passed through the triple grain junction, it grew faster with a lower CTOD value; the changes in the CTOD value agreed with those of the crack growth rate. At the cathodic potential, the static SC crack grew in a zigzag path and in an unsteady manner, showing crack growth acceleration and retardation. This unsteady crack growth was considered to be due to the changes in the local hydrogen content near the crack tip. The changes in the CTOD value also agreed with those of the crack growth rate. The CTOD value in the corrosive environment was influenced by the microstructure of the material and the local hydrogen content, showing a larger scatter band, whereas the CTOD value of the fatigue crack in dry air was determined by the applied stress intensity factor, with a smaller scatter band. In addition, the CTOD value in the corrosive environment under both static and dynamic loading was smaller than that of the fatigue crack; the environmentally induced crack had a sharper crack tip than the fatigue crack in dry air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号