首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Without the use of a metal catalyst in the process, ZnO with nanostructures was successfully prepared on Si (100) substrate by simple chemical vapor-deposition method. In our work, Ar was used as the plasma forming gas, O2 was the reactive gas and metal zinc powder (99.99% purity) vaporized by cylinder hollow-cathode discharge (HCD) acted as the zinc source. The crystal structures of the as-synthesized ZnO nanostructures were characterized by X-ray diffraction (XRD); the ZnO sample growing on the wall of the crucible showed a ‘comb-like’ nanostructure, while the other one at the bottom of the crucible showed a ‘rod-like’ structure, which can be attributed to the difference of the oxygen content. The measurement on the photoluminescence (PL) performance of the ZnO nanostructures was carried out at room temperature. The results indicated that the ‘comb-shape’ ZnO nanomaterial possessed a remarkably strong ultraviolet emission peak centered at 388 nm, while ZnO nanorods, except better ultraviolet emission, also had relatively strong blue-green emission ranging from 470 to 600 nm due to the existence of oxygen vacancies. The growth mechanism of ZnO with nanostructures is also discussed in this paper.  相似文献   

2.
ZnO nanostructures were prepared on Si(100) substrates using a vapour transport technique in water vapour and oxygen gas, in the existence of Au catalyst. Synthesised in both water vapour and oxygen gas, the ZnO nanostructures presented hexagonal wurtzite structure but exhibited different growth orientations, which subsequently created diverse nanostructures. The different ZnO morphologies grown in different atmosphere are due to various growth mechanisms, which have been proposed in this article. At the end, the photoluminescence spectra of both ZnO nanostructures were measured, which revealed only a strong ultraviolet peak at about 389 nm.  相似文献   

3.
彭智伟  刘志宇  傅刚 《材料导报》2017,31(10):16-18, 40
采用简单的热蒸发法,在没有使用载气和催化剂的情况下成功制备出ZnO四足和多足纳米结构。采用场发射扫描电镜、X射线衍射、高分辨透射电子显微镜和荧光分光光度计研究了ZnO纳米结构的形貌、结构和光致发光性能。结果表明所合成的ZnO是由具有六方纤锌矿结构的四足和多足纳米结构组成,足部呈棒状并沿[0001]方向生长。提出了四足和多足ZnO纳米结构的生长机制。在室温下的光致发光光谱中,494nm处出现一个较强的绿色发射峰,391nm处出现一个较弱的紫外发射峰。  相似文献   

4.
《Materials Letters》2007,61(8-9):1789-1792
A facile and environment-friendly sonochemical route to fabricate well-defined dentritic ZnO nanostructures in a room-temperature ionic liquid has been reported. The structure and morphology of the synthetic branch-shaped ZnO products were characterized by X-ray diffraction and transmission electron microscopy. The photoluminescence (PL) spectrum of the synthetic dentritic ZnO nanostructures exhibits a strong ultraviolet emission at 378 nm and a weak green emission at 532 nm respectively at room temperature. A plausible formation mechanism of dentritic ZnO nanostructures was discussed in detail.  相似文献   

5.
Modulated ZnO hierarchical nanostructures have been successfully synthesised by the one-step thermal evaporation method. The ZnO hierarchical nanostructures consist of large quantities of high-dense nanowires strewn with some small balls, and these balls are connected with wires by short rods. The composition detection results show that the ball is metallic Zn, which further confirms that Zn can serve as the catalyst for vapour–liquid–solid growth of the ZnO hierarchical nanostructures. The photoluminescence spectrum of the modulated ZnO hierarchical nanostructures includes a weak ultraviolet peak centred at 380?nm and a strong green emission centred at 500?nm, which can be attributed to the exciton emission at the near-band edge and a mass of singly ionised oxygen vacancies in products, respectively.  相似文献   

6.
Zn/ZnO metal/semiconductor nanostructures were successfully synthesised by a facile zinc-rich chemistry liquid-phase approach with zinc microspheres as sacrificial templates at ambient temperature. A series of globular Zn/ZnO core/shell structures and hollow microsphere architectures self-assembled by Zn/ZnO nanorod heterojunction arrays were obtained by controlling the amount of zinc particles. The structure, morphology, composition and optical properties of the products have been characterised by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and photoluminescent spectroscopy. A possible growth mechanism of the Zn/ZnO nanostructures has been proposed based on the structural analysis. The growth mechanism of Zn/ZnO hollow microspheres is ascribed to Kirkendall effect. A new strong blue emission at 440 nm and a green emission around 500 nm with an enhancement over one order of magnitude compared with the pure ZnO sample have been observed. These emission bands are attributed to two kinds of mechanisms that have been discussed in detail.  相似文献   

7.
Flower-shaped ZnO nanostructures, containing the triangular-shaped petals (sharpened tips and wider bases) have been achieved by simple thermal evaporation of high purity metallic zinc powder in the presence of oxygen at 440 degrees C on steel alloy substrate without the use of metal catalyst or additives. Detailed structural studies confirm that the obtained flower-shaped nanostructures are single crystalline and possesses a wurtzite hexagonal structure, grown along the c-axis in the [0001] direction. Raman and room temperature photoluminescence analysis substantiate a wurtzite hexagonal phase with a good crystal quality and a strong UV emission at 378 nm, respectively, indicating few or no structural defects. Additionally, a detailed possible growth mechanism has also been discussed.  相似文献   

8.
Crystalline zinc oxide (ZnO) nanostructures have been grown on Si substrates by means of Plasma Based Ion Implantation and Deposition (PIII&D) at a temperature of about 300 °C and in the presence of an argon glow discharge. In the process a crucible filled with small pieces of metallic zinc plays the role of the anode of the discharge itself, being polarized by positive DC voltage of about 400 V. Electrons produced by thermionic emission by an oxide cathode (Ba, Sr, Ca)O impact this crucible, causing its heating and vaporization of Zn. Partial ionization of Zn atoms takes place due to collisions with plasma particles. High negative voltage pulses (7 kV/40 μs/250 Hz) applied to the sample holder causes the implantation of metallic zinc into Si surface, while Zn deposition happens between pulses. After annealing at 700 °C, strong UV and various visible photoluminescence bands are observed at room temperature, as well as the presence of ZnO nanoparticles. The coated surface was characterized in detail using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. XRD indicated the presence of only ZnO peaks after annealing. The composition analysis by EDS revealed distinct Zn/O stoichiometry relation depending on the conditions of the process. AFM images showed the formation of columns in the nanoscale range. Topography viewed by SEM showed the formation of structures similar to cactus with nanothorns. Depth analysis performed by XPS indicated an increase of concentration of metallic Zn with increasing depth and the exclusive presence of ZnO for outer regions. PIII&D allowed to growing nanostructures of ZnO on Si without the need of a buffer layer.  相似文献   

9.
Flower-shaped zinc oxide (ZnO) structures have been synthesized in the reaction of aqueous solution of zinc nitrate and NaOH at 90 °C. To examine the morphology of ZnO nanostructures, time-dependent experiments were carried out. Detailed structural observation showed that the flower-like structures consist of triangular-shaped leaves, having sharpened tips with wider bases. Photoluminescence spectrum measured at room temperature show a sharp UV emission at 381 nm and a strong and broad green emission at 480-750 nm attributed to structural defects. A possible growth mechanism for the formation of flower-shaped ZnO structures is discussed in detail.  相似文献   

10.
Star-like ZnO nanostructures were synthesized in bulk quantity by thermal evaporation method. The morphologies and structure of ZnO nanostructures were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor-solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow ultraviolet emission at around 380 nm and a broad green emission around 491 nm. Raman spectrum of the ZnO nanostructures was also discussed.  相似文献   

11.
The cathodoluminescence (CL) properties including intensity and distribution of the band to band and defect emission of the flower-like ZnO, ZnO/ZnS core-shell and tube-like ZnS nanostructures have been investigated. It is indicated that the Ultraviolet (UV) emission at 380 nm of the flower-like ZnO nanostructures due to the band to band emission is weaker than their yellow emission at 600 nm induced by interstitial oxygen. Moreover, the UV emission of the ZnO nanorods unevenly distributes from the tip to the end. The UV emission on the tip is stronger than that of others due to the waveguide. On the contrary, the yellow emission at 600 nm is uniform. Furthermore, the UV emission of ZnO has been greatly enhanced and the yellow emission has been inhibited by the formation of ZnO/ZnS core-shell nanostructures in the sulfuration process due to the elimination of interstitial oxygen. However, the polycrystalline tube-like ZnS nanostructures shows the uniform and weak defect emission due to S vacancies.  相似文献   

12.
Optical and field emission properties of Zinc Oxide nanostructures   总被引:1,自引:0,他引:1  
Zinc Oxide (ZnO) nano-pikes were produced by oxidative evaporation and condensation of Zn powders. The crystalline structure and optical properties of the ZnO nanostructures (ZnONs) greatly depend on the deposition position of the ZnONs. TEM and XRD indicated that the ZnONs close to the reactor center, ZnON-A, has better crystalline structure than the ZnONs away from the center, ZnON-B. ZnON-A showed the PL and Raman spectra characteristic of perfect ZnO crystals, whereas ZnON-B produced very strong green emission band at 500 nm in the photoluminescence (PL) spectrum and very strong Raman scattering peak at 560 cm(-1), both related to the oxygen deficiency due to insufficient oxidation of zinc vapor. ZnON-B exhibited better field emission properties with higher emission current density and lower turn-on field than ZnON-A.  相似文献   

13.
Tetrapod-like ZnO nanostructures were fabricated on ZnO-coated sapphire (001) substrates by two steps: pulsed laser deposition (PLD) and catalyst-free thermal evaporation process. First, the ZnO films were pre-deposited on sapphire (001) substrates by PLD. Then the ZnO nanostructures grew on ZnO-coated sapphire (001) substrate by the simple thermal evaporation of the metallic zinc powder at 900 °C in the air without any catalysts. The pre-deposited ZnO films by PLD on the substrates can provide growing sites for the ZnO nanostructures. The as-synthesized ZnO nanostructures were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrum (FTIR). The results show that the tetrapod-like ZnO nanostructures are highly crystalline with the wurtzite hexagonal structure. Photoluminescence (PL) spectrum of as-synthesized nanostructures exhibits a UV emission peak at ~ 389 nm and a broad green emission peak at ~ 513 nm. In addition, the growth mechanism of ZnO nanostructures is also briefly discussed.  相似文献   

14.
Hexagonally well-faceted microcrystals of ZnO have been grown by thermal evaporation of Zn powder in oxygen ambient at 700 C under atmospheric pressure. It has been observed that the properties (size and quality) of ZnO microcrystals have a strong dependence on the reactor temperature at which the oxygen gas is admitted into the growth zone. The microcrystals grown with oxygen admittance at 450 C have a length of 1 μm and a diameter of 0.75 μm while that grown with oxygen admittance at 600 C have a length of 1.5-2 μm and a diameter of 1 μm. Room temperature photoluminescence spectra show a ultraviolet (UV) emission peak at 385 nm with a green band emission at around 500 nm. The UV-to-green band emission ratio for the microcrystals grown with oxygen admittance at 450 C is observed to be 1.25 and the ratio decreases to 0.45 for the sample grown with oxygen admittance at 600 C.  相似文献   

15.
Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrysta...  相似文献   

16.
ZnO nanowire arrays were synthesized on zinc foil by a simple thermal evaporation process at relatively low temperature. Morphology and size controlled synthesis of the ZnO nanostructures was achieved by variation of the synthesis temperature, reaction time and the surface roughness of the substrate. A gas-solid and self-catalytic liquid-solid mechanism is proposed for the growth of nanowires at different temperatures. High-resolution transmission electron microscopy (HRTEM) showed that the as-grown nanowires were of single crystal hexagonal wurtzite structure, growing along the [101] direction. Photoluminescence exhibited strong UV emission at ~382?nm and a broad green emission at ~513?nm with 325?nm excitation. Raman spectroscopy revealed a phonon confinement effect when compared with results from bulk ZnO. The nanowire arrays also exhibited a field emission property.  相似文献   

17.
Uniform ZnO normal nanobelts and toothed-nanobelts have been successfully synthesized respectively through pure zinc powder evaporation without catalyst at 600°C. Experimental results indicate that the key to the fabricating method is to control the gas flow rates and the partial pressures of argon, oxygen and zinc vapor. Scanning electron microscopy and high-resolution transmission electron microscopy observations show that the ZnO nanobelts have several types of single crystalline morphology. HRTEM images reveal that there are numerous screw dislocations and the growth is around the dislocations in the toothed-nanobelts. The growth of ZnO nanobelts is controlled by vapor-solid and screw dislocation mechanisms. Room temperature photoluminescence spectra of the toothed-nanobelts showed a UV emission at ∼390 nm and a broad green emission with 4 subordinate peaks at 455–495 nm.  相似文献   

18.
Electro-exploding wire (EEW) technique was employed to prepare ZnO and Au–ZnO hybrid nanoparticles. Average size of the prepared ZnO nanoparticles is found to be 3.8 nm and uniform throughout. These ultrafine ZnO nanoparticles are found to agglomerate around the highly surface active Au nanoparticles. It also acts as a stabilizer for the Au nanoparticles by avoiding self agglomeration. The hybrid nanocrystals show strong crystallinity of face-centered cubic and hexagonal wurtzite structure of gold (Au) and zinc oxide (ZnO), respectively. Presence of Au3Zn in pristine sample is a clear indication of a strong interaction between ZnO and Au systems. The hybrid system shows strong enhancement in the ZnO Raman signals and quenching in the visible Photoluminescence (PL) emission. Energy-dependent PL analysis shows the dominance of the surface defects over the bulk contribution in these ultrafine ZnO and Au–ZnO hybrid nanostructures.  相似文献   

19.
Chen R  Zou C  Bian J  Sandhu A  Gao W 《Nanotechnology》2011,22(10):105706
Silver-doped zinc oxide (Ag:ZnO) nanostructures were prepared by a facile and efficient wet oxidation method. This method included two steps: metallic Zn thin films mixed with Ag atoms were prepared by magnetron sputtering as the precursors, and then the precursors were oxidized in an O(2) atmosphere with water vapour present to form Ag:ZnO nanostructures. By controlling the oxidation conditions, pure ZnO and Ag:ZnO nanobelts/nanowires with a thickness of ~ 20 nm and length of up to several tens of microns were synthesized. Scanning electron microscopy, transmission electron microscopy, cathodoluminescence and low temperature photoluminescence (PL) measurements were adopted to characterize the microstructure and optical properties of the prepared samples. The results indicated that Ag doping during magnetron sputtering was a feasible method to tune the optical properties of ZnO nanostructures. For the Ag:ZnO nanostructures, the intensity of ultraviolet emission was increased up to three times compared with the pure ones. The detailed PL intensity variation with the increasing temperature is also discussed based on the ionization energy of acceptor in ZnO induced by Ag dopants.  相似文献   

20.
In this study, we fabricated ZnO nanostructures using bamboo fibers as templates. The starting material used was zinc acetate, and the nanostructures were synthesized by soaking and calcining the bamboo fibers. The fabricated nanostructures were characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM), and ultraviolet-visible spectrophotometry. The results showed that the size of the ZnO nanoparticles was approximately 20–100 nm. When the ZnO nanoparticles were used as the catalyst in the photodegradation of methyl orange, the dye degraded by 95.98 % in 80 min. The response and recovery times of a gas sensor based on the ZnO nanoparticles were 25 and 24 s, respectively, during the detection of C2H5OH in a concentration of 10 ppm at 270 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号