首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
甲醇和甲醛催化合成聚甲氧基二甲醚   总被引:12,自引:5,他引:7       下载免费PDF全文
聚甲氧基二甲醚作为柴油添加剂,可以提高柴油的十六烷值(CN),提高燃油的利用率,作为甲醇大宗下游产品具有广阔的应用前景。在固定床管式反应器中,以改性大孔阳离子交换树脂为催化剂,在温度40~100℃、液相空速1.32~16.37 h-1、甲醛/甲醇摩尔比1~4和反应压力0.1~3.0 MPa下,以单因素实验和正交实验相结合的方式,系统地研究了甲醛与甲醇缩醛化工艺条件,获得了较佳的工艺条件,在温度70℃、甲醛/甲醇摩尔比3:1、液相空速1.32 h-1、反应压力2.0 MPa的条件下,甲醇的转化率为69.72%,DMM3-8选择性为62.08%。  相似文献   

2.
采用固定床反应装置,以共沉淀法制备甲醇催化剂和一步法合成二甲醚催化剂,采用BET、XRD和SEM对催化剂进行表征。在反应压力2.5 MPa、反应温度260 ℃和空速(500~900) h-1条件下,催化剂催化活性最好,其中,CO转化率≥90%,二甲醚收率≥60%,二甲醚选择性≥65%。  相似文献   

3.
在加压固定床反应器上,研究了Ni-Mo/HM催化剂的偏三甲苯异构化性能。重点考察了反应温度、反应压力、质量空速和氢油比[n(氢气)/n(偏三甲苯),下同]等因素对反应的影响,得到了较适宜的反应工艺条件:反应温度260~270 ℃,反应压力1.2 ~1.4 MPa,质量空速0.9~1.1 h-1,氢油比为5~6。在反应温度260 ℃,压力1.2 MPa,质量空速1.0 h-1,氢油比为5的条件下,偏三甲苯的质量转化率为49.17%,均三甲苯的质量收率为23.10%,均三甲苯的选择性为46.98%。实验结果表明在该反应条件下,该催化剂具有良好的催化活性。  相似文献   

4.
以La改性氧化铝为催化剂,在模拟绝热固定床反应器中考察工艺条件对甲醇气相脱水制二甲醚反应的影响。结果表明,甲醇进料温度210℃时,甲醇脱水反应剧烈,绝热温升约130℃。催化剂床层热点温度低于380℃时,二甲醚选择性大于98%,过高温度产生大量副产物甲烷。反应压力对反应影响甚微。在甲醇进料温度240℃(热点温度370℃)、甲醇进料空速1.5 h-1和反应系统压力为50 k Pa条件下,甲醇转化率大于84%,二甲醚选择性大于98.5%,连续运转2 000 h,催化剂无明显失活迹象。  相似文献   

5.
针对百万吨级二甲醚生产的要求,建立了甲醇气相脱水制二甲醚的反应动力学模型以及多段原料气冷激的固定床反应器模型,并模拟计算得到甲醇制二甲醚过程中反应器浓度与温度的轴向分布.通过改变操作条件对反应器的参数敏感性进行分析,结果发现,甲醇原料气分为三段进入反应器较为合适,入口气量分配比例最好为7∶2∶1,此时反应器最高出口温度略高于360℃,各段出口温度大致相当,分布较合理;冷激气温度并非越低越有利,当二段入口温度低于催化剂起活温度就没有意义了,在入口甲醇原料温度为260℃、冷激气温度为140.0℃时,甲醇总转化率利二甲醚产量达到最大值.  相似文献   

6.
采用类似Deacon过程的氯化氢催化氧化法制备氯气,选用自制的氯化铜为活性组分的铜基催化剂,通过正交实验考察反应温度、氯化氢与氧气体积比和空速对氯气产率的影响。结果表明,反应温度升高,氯化氢转化率增大;原料氯化氢与氧气体积比减小以及氧气投料量增加,氯化氢转化率明显升高;空速为(0.11~0.15) h-1时,氯化氢转化率变化不大,空速为0.20 h-1时,氯化氢转化率明显降低。在反应温度420 ℃、氯化氢与氧气体积比2∶1和空速0.15 h-1条件下,氯化氢转化率最高,达到76.98%~80.58%。  相似文献   

7.
研究了三相床反应器中合成气一步法制二甲醚的工艺条件,催化剂是由甲醇合成催化剂与甲醇脱水催化剂均匀混合组成的双功能催化剂.在温度220~265℃、压力4~5MPa、空速1~2 L/(g·h)的条件下,分别考察了温度、压力和空速对二甲醚合成反应中CO转化率及二甲醚选择性的影响.结果表明,在上述各因素相应的范围内,,随着反应温度的升高,CO转化率、DME选择性逐渐增加;随着压力的升高,CO转化率、DME选择性逐渐增加;CO转化率、DME选择性随空速的提高而逐渐减小.与固定床实验结果相比,三相床反应器中CO转化率略低于固定床反应器.  相似文献   

8.
王刚 《化学工程》2022,(7):57-61
丙烷脱氢装置的核心是反应。为了提高反应阶段丙烯的收率,对丙烷脱氢反应机理、脱氢热力学进行理论分析;对反应温度、压力、空速影响转化率、选择性及生焦量进行实验分析;对进料杂质组分影响反应进行定量和定性分析。结果表明:反应温度、压力、空速以及进料杂质组分都会影响丙烯的收率。基于以上分析,对丙烷脱氢反应工艺参数进行优化实验,确定反应较佳的工艺条件为:反应器床层温度585—600℃,反应器绝对压力0.05 MPa,反应器空速0.6—0.7 h-1。  相似文献   

9.
甲醇在常温常压下为液态且具有极高的载氢密度,因而是一种较为理想的载氢介质。甲醇重整反应器的设计对于甲醇在线重整制氢燃料电池系统的设计具有重要意义。对于甲醇重整反应器,反应温度较高时重整气中CO浓度高,不利于后续的CO深度脱除;而反应温度较低时,甲醇转化率与液相空速低,会导致催化剂利用率低并且反应器体积较大。基于以上问题,本工作提出了一种由第一段300℃下等温重整和第二段300℃~220℃下绝热重整组成的两段变温重整工艺。基于Aspen Plus对该工艺进行了模拟研究,证明该工艺在理论上可以实现。然后通过固定床反应器进行实验研究,结果表明在甲醇完全转化的条件下,本变温工艺的甲醇液相空速为4.08h-1,重整气中CO浓度为0.56%,重整制氢效率为108.98mL/(min·mL催化剂)。而220℃下等温重整工艺的液相空速为1.5h-1,重整气中CO浓度为0.40%,重整制氢效率为44.89mL/(min·mL催化剂)。变温工艺可以在较大的液相空速下获得更高的重整制氢效率,降低催化剂用量,使重整器结构更加紧凑。同时,与300℃下等温重整工艺相比,...  相似文献   

10.
两段法固定床甲醇制芳烃工艺复杂,产物种类多,各个单元间相互影响,变量间相互耦合,如何保证产品收率,推进其工业化发展,是该工艺亟需解决的难题。基于两段法甲醇制芳烃实验数据,采用UniSim软件对工艺进行动态模拟,研究了不同时刻进料醇质量分数、一段反应温度、二段反应温度和空速变化对芳烃选择性的影响,并对操作条件进行了优化。结果表明:进料醇质量分数与空速对芳烃选择性的影响显著。在实验范围内,当甲醇进料100%,一段反应温度450℃,二段反应温度480℃,空速为0.55 h-1时的芳烃选择性SAro达到最大值93.34%;当甲醇进料90%,一段反应温度450℃,二段反应温度480℃,空速为0.6 h-1时的三苯(苯,甲苯,二甲苯)选择性SBTX达到最大值70.9%。  相似文献   

11.
建立了合成气一步法制二甲醚管壳式固定床反应器二维拟均相模型,采用有限差分和Runge-Kutta相结合的方法(MOL法)求解催化床层内关键组分浓度与床层温度的轴向与径向分布,模拟分析了反应管直径和操作条件对反应器性能的影响. 结果表明,当反应管内径为38 mm时,标况下床层热点在距反应管入口2.1 m处,热点温度为262.76℃,最大径向温度差为4.1℃,CO单程转化率为64.12%,二甲醚选择性为89.86%. 反应管直径增大导致热点温度升高,沸腾水温度、入塔气量和CO含量都对CO单程转化率、二甲醚选择性和床层热点温度有较大影响.  相似文献   

12.
通过硝酸活化和高温水热活化方法对活性炭进行表面改性,之后在改性活性炭上负载不同含量的磷钨酸考察催化剂在有水蒸汽条件下的催化氧化脱硝催化活性,初始反应条件为:温度80 ℃,空速800 h-1,O2体积分数为5%、H2O体积分数为4.2%、NO含量为443 mg·m-3。通过FT-IR表征制备的催化剂评价前后表面有机活性基团的变化,将不同磷钨酸负载量下活性炭催化剂的脱硝活性评价结果和红外光谱结合,结果表明,湿气条件下,磷钨酸负载质量分数为10%时制备的催化剂能够较好地保持催化氧化脱硝稳定性,NO脱除效率约40%。考察不同操作参数,如温度、水蒸汽含量、O2含量和空速对负载质量分数10%磷钨酸的活性炭催化剂催化氧化脱硝抗水性能的影响,最优操作条件:温度120 ℃,O2体积分数8%,水蒸汽体积分数6%,空速1 000 h-1,催化氧化反应的NO转化率达62%。  相似文献   

13.
以B2O3为助催化剂,采用研磨混合法改性Na2CO3催化剂,在固定床反应器中催化甲醇脱氢制备无水甲醛,考察催化剂的组成和反应条件等对催化反应的影响,采用XRD、TG-DTG、N2吸附-脱附、SEM和CO2-TPD等对催化剂进行表征。结果表明,以B2O3为助催化剂采用机械研磨混合法改性的Na2CO3催化剂,增加了催化剂的比表面积,在(10~30) nm增加了大量的孔道,平均孔径达18.44 nm,比表面积为1.65 m2·g-1,且B2O3分布均匀,改性后的催化剂碱性降低,在催化甲醇脱氢制备无水甲醛的反应中,催化活性明显高于Na2CO3催化剂,表明B2O3改性Na2CO3催化剂能提高甲醇转化率和甲醛选择性。在B2O3/Na2CO3催化剂中B2O3质量分数为30%、甲醇进料质量分数为26%、反应温度为650 ℃和甲醇重时空速为2.94 h-1条件下,甲醇转化率达59.97%,甲醛选择性达83.28%。  相似文献   

14.
甲醇脱水制二甲醚固定床工艺技术研究   总被引:1,自引:0,他引:1  
以甲醇为原料,采用阳离子交换树脂为催化剂,对甲醇脱水制二甲醚的工艺技术进行了研究.在固定床反应器中考察了压力、温度、空速等工艺条件对甲醇转化率的影响,取得了适宜的工艺参数:空速1.0h-1,压力1.6MPa(表),温度150~155℃,在此工艺条件下甲醇转化率达65%以上,二甲醚选择性为100%.  相似文献   

15.
二氧化碳催化加氢合成二甲醚的研究   总被引:7,自引:0,他引:7  
以自然界广泛存在的二氧化碳为原料,催化加氢制甲醇和二甲醚具有重要的经济价值。采用CNJ202工业合成甲醇催化剂和HZSM-5沸石分子筛为原料制得二氧化碳加氢一步法合成甲醇及二甲醚双功能催化剂。测试结果表明,在实验条件下,该催化剂合适的配比是HZSM-5/ CNJ202=0.5(wt),焙烧温度550℃。还原条件是在以N2为载气,2% H2气氛中,于250℃、常压下还原6小时,催化剂粒度和一定变化的操作空速对二甲醚选择性无明显影响,提高反应温度有利于增大二甲醚的选择性。  相似文献   

16.
采用固定床法考察了原料异丁烷中乙硫醇、甲醇、正丁烷和1-丁烯等杂质对Pt-Sn-K/Al2O3催化剂上异丁烷脱氢制异丁烯反应性能影响,反应产物使用气相色谱进行分析.实验结果表明,在异丁烷脱氢制异丁烯正常反应条件下,即温度580℃、压力0.1MPa、进料组成H2/i-C4H10(体积比)= 2、总空速GHSV = 2000h-1、GHSV(i-C4H10)= 667h-1,乙硫醇、甲醇、正丁烷和1-丁烯对Pt-Sn-K/Al2O3催化剂的异丁烷转化率和异丁烯选择性均有较大的影响,且杂质含量越高,对催化剂的转化率和选择性影响越大.并对杂质造成催化剂失活的原因进行了分析.  相似文献   

17.
为了探索填充床内催化活性分布对甲醇重整制氢的影响,文中采用铜基催化剂设计了3种不同活性布置的催化剂床层,并在管式反应器内开展了实验研究,考察了3种不同活性分布的床层上空速和温度对甲醇转化率及产氢速率的影响。通过甲醇蒸汽重整实验表明,3种床层上甲醇转化率及产氢速率随着反应温度和空速的变化规律相同。但床层Ⅰ的催化剂布置形式,改善了局部热效应,提高了催化剂的利用效率。结果显示:床层Ⅰ的催化剂布置形式优于其他2种催化剂布置形式;相同催化剂用量下,床层Ⅰ中的甲醇转化率比床层Ⅱ的甲醇转化率提高9.91%;最佳的活性布置方式是,催化剂用量由反应器入口到出口梯级增加。且在甲醇裂解实验中,床层Ⅰ中的H2体积分数高于床层Ⅱ中的。  相似文献   

18.
江罗  陈标华  张吉瑞 《化工学报》2012,63(11):3519-3524
用浸渍法制备了以Al2O3为载体、Ni为活性组分的Ni/Al2O3二氧化碳甲烷化催化剂,在等温固定床反应器中研究了在Ni/Al2O3催化剂作用下,高纯氯化氢中微量CO2甲烷化反应效果,并考察了温度、压力、氯化氢体积空速以及H2/CO2摩尔比对CO2转化率的影响,同时研究了催化剂活性、稳定性及其再生性能。结果表明,在温度为250℃、压力为4.0 MPa、氯化氢空速为100 h-1、H2/CO2摩尔比为500:1条件下,CO2甲烷化反应效果最好,其转化率可达到90%左右,对于高纯氯化氢中微量CO2的脱除起到很好的效果;催化剂在温度高于300℃时,反应不久后会迅速失活;催化剂再生性能只能部分恢复到新鲜水平。  相似文献   

19.
为了设计N_2O催化分解反应器,运用Fluent软件对整体式分子筛催化剂进行数值模拟,考察孔密度和操作条件对整体式分子筛催化剂转化率的影响。结果表明,在相同温度下,N_2O的转化率随着催化剂孔密度的减小而降低。在反应器轴向距离120 mm处,气体反应最快;提高入口温度、浓度或降低空速,均有利于在较短的轴向距离内达到较高的N_2O转化率。在固定床反应器中,比较棒状催化剂和整体式催化剂中床层温度、反应转化率及轴向压降的变化规律,为整体式分子筛催化剂工业化设计提供理论基础。  相似文献   

20.
采用球形活性炭为载体,制备了用于乙炔氢氯化反应的载Cu催化剂, 并采用TEM进行了表征。在常压固定床反应器中考察了溶剂、酸洗液、Cu的负载量、焙烧温度对Cu/C催化剂性能的影响。结果表明, 以1 mol/L盐酸为溶剂,1 mol/L H3PO4为活性炭酸洗液,Cu的负载量为15%,焙烧温度为500℃时,该催化剂具有较高的分散度和反应活性。空速180 h-1、V(HCl)/V(C2H2)=1.1、Cu的负载量为15%、温度180℃时,乙炔氢氯化反应的转化率可达68%以上, 氯乙烯选择性不低于99.5%,同时具有较好的稳定性; 在空速为540 h-1时, 其催化活性会因活性组分的团聚结晶而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号