首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈璐  李长荣  熊星强 《钢铁》2022,57(1):74-82
 为了控制与改善高碳硬线钢中氧化铝夹杂物的数量、形状和分布,提高钢的洁净度,细化钢的组织结构,均匀钢的化学成分,在高碳硬线钢中添加稀土镧元素研究其对氧化铝夹杂物的改性问题。通过对高碳硬线钢中添加稀土镧形成的稀土氧(硫)化物,采用扫描电镜和能谱分析进行表征,研究其对氧化铝的改性问题,发现镧的加入可以改变夹杂物的形状,夹杂物从不规则形状转变为较规则的椭圆形,随着夹杂物面间距增大,其逐渐弥散化。利用热力学以及边-边匹配模型计算其与γ-Fe和Al2O3之间沿密排晶向的原子间错配度和密排晶面的面间错配度,探究含镧夹杂物作为钢液凝固时初生相异质形核核心的可能性及有效性。结果表明,加入镧后,在1 000~2 000 K温度范围内根据生成夹杂物的吉布斯自由能的大小,得出钢中可能生成夹杂物的顺序为La2O3>La2O2S>LaAlO3>LaS>La3S4。利用边-边匹配模型计算稀土氧(硫)化物与γ-Fe和Al2O3之间的原子匹配情况,发现了La2O3、LaS、La2O2S和La3S4均可能作为Al2O3和γ-Fe异质形核的核心,且La2O2S可能优先成为γ-Fe异质形核核心, LaS可能优先成为Al2O3异质形核核心,揭示了钢中氧化铝夹杂物的改性机理,为高碳硬线钢中非金属夹杂物的处理提供了理论依据。  相似文献   

2.
宋程  项利  石超  李建军 《电工钢》2024,(1):39-45
通过工业试验研究了不同稀土含量对高牌号无取向硅钢中夹杂物的影响。研究结果表明,当稀土质量分数为0.002 1%时,稀土元素主要形成(La, Ce)AlO3夹杂物,从而进行脱氧、变质钢中Al2O3夹杂物;随着钢中稀土含量的增加,稀土主要形成以(La, Ce)AlO3-(La, Ce)2O2S类和(La, Ce)2O2S类稀土夹杂物,主要降低了钢中硫化物的析出量,但是此时生成的稀土夹杂物对钢中大量温降过程析出和二次氧化产生的Al2O3类夹杂物的改性作用较弱,这导致稀土含量高时钢中Al2O3夹杂物的数密度明显增加。此外,夹杂物长宽比的统计结果表明,稀土处理使铸坯中夹杂物发生明显球化,但在随后的热轧工序中,常规处理与稀土处理的热轧板中夹杂物的平均长宽比差异较小。即在工业生产实际中,稀土处理对成品组织中的夹杂物的长宽比影响很小,影响夹杂...  相似文献   

3.
李荣  孟倩  李涛  谭敏  陈晨  张福成 《中国冶金》2023,(12):66-78
高锰钢辙叉是铁路运输系统的关键部件,对铁路安全运行具有重要影响。钢中夹杂物严重影响钢的性能,稀土改性夹杂物是控制夹杂物的有效手段。基于热力学和第一性原理计算以及试验研究,系统分析了铁路辙叉用高锰钢稀土处理前后夹杂物的演变及其对钢性能的影响。热力学计算结果表明,未添加稀土Y时,高锰钢中主要的夹杂物为MnS和Al2O3;添加稀土Y后,高锰钢中的MnS和Al2O3转变为Y2S3、YS、YAlO3、Y2O3和Y2O2S;当Y质量分数为0.03%时,夹杂物全部转变为稀土夹杂物。第一性原理计算结果表明,高锰钢中夹杂物形成并稳定存在的顺序为Y2O3>YAlO3>Y2O2S>Al2O3>Y...  相似文献   

4.
为了研究Fe-Mn-Al-C低密度钢脱氧合金化夹杂物的生成及机理,采用Si、Mn、Al进行脱氧合金化,通过场发射扫描电子显微镜结合夹杂物自动分析系统对Fe-Mn-Al-C低密度钢样品中的夹杂物进行观察。结果显示,Fe-Mn-Al-C低密度钢中夹杂物主要分为6类,即单颗粒Al2O3夹杂物、单颗粒MnS夹杂物、单颗粒AlN夹杂物、Al2O3-MnS复合夹杂物、AlN-MnS复合夹杂物、Al2O3-AlN-MnS复合夹杂物。单颗粒的Al2O3、MnS、AlN夹杂物的数量相对较多,夹杂物尺寸以小于5μm为主。热力学计算发现Al2O3在脱氧合金化时生成,AlN在固相分数为0.844时开始析出,而MnS在完全凝固后的固相钢中开始析出。不同夹杂物间的二维晶格错配度计算结果显示,MnS(110)/Al2O3(001)、AlN(001)/Al<...  相似文献   

5.
刘南  成功  任英  张立峰 《工程科学学报》2022,44(12):2069-2080
大尺寸CaO?Al2O3类夹杂物容易引起轴承钢疲劳失效,大尺寸CaO?Al2O3类夹杂物的控制是生产高端GCr15轴承钢的关键因素之一。精炼过程中合金引入杂质元素、渣精炼和精炼过程中卷渣是铝脱氧轴承钢中大尺寸CaO?Al2O3类夹杂物的主要潜在来源。硅铁合金通常用来提高轴承钢的淬火和抗回火软化性。本文通过实验室实验、样品分析和热力学计算,研究了硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响。硅铁合金主要由深色的硅相和浅色的硅铁相组成,钙元素在硅相和硅铁相的界面处以金属化合物形式存在。研究发现,加入硅铁合金后,钢中总钙(T.Ca)含量增加,钢中的Al2O3和MgO·Al2O3夹杂物被改性为CaO?Al2O3类夹杂物,夹杂物尺寸随着夹杂物中CaO含量增加而减小,钢中并未生成大尺寸CaO?Al2O3类夹杂物。随着钢中T.Ca含量增加,夹杂物平均尺寸降低,钢中T.O含量增加,表明硅铁合金中金属钙元素不会直接引起钢中大尺寸CaO?Al2O3类夹杂物的生成。但是生成的小尺寸固相CaO?Al2O3类夹杂物在水口处粘附结瘤,结瘤物脱落后会成为钢中大尺寸CaO?Al2O3类夹杂物的来源之一。   相似文献   

6.
Q235钢中夹杂物演变规律和生成机理分析   总被引:1,自引:0,他引:1  
 为了更好地控制Q235钢中非金属夹杂物的种类和数量,提高钢的冲击韧性,采用自动扫描电镜分析了Q235钢中非金属夹杂物在LF精炼、中间包和连铸坯中成分和形貌的演变规律。采用FactSage热力学软件对钢中各类夹杂物的生成机理进行了分析。研究发现,钢中非金属夹杂物的演变规律为均相的SiO2-MnO夹杂物→均相的SiO2-Al2O3-MnO-TiOx夹杂物→双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物→多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。样品冷却过程中均相的SiO2-MnO夹杂物发生相变析出纯SiO2导致在LF精炼初期钢中出现双相SiO2-MnO类夹杂物。加入的硅钙钡合金中铝含量较高,导致液态夹杂物在钢液中析出MgO·Al2O3,以及在LF出站钢样品中出现双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物。含钛的夹杂物在连铸坯凝固冷却过程会析出纯的Ti3O5,并且钢中还会析出MnS析出相,因此连铸坯中存在多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。  相似文献   

7.
为了进一步研究20CrMo合金钢在生产过程中夹杂物的演变机理,实现对钢中非金属夹杂物的合理控制,保证生产顺行,提高产品力学性能,针对“BOF→LF→RH→钙处理→连铸→热轧”工序生产20CrMo合金钢全流程中非金属夹杂物的演变规律进行了研究。在LF精炼及RH精炼加钙前钢中非金属夹杂物含有70%以上的Al2O3。钙处理后,由于过量的钙加入到钢液中,夹杂物中CaS质量分数迅速增加至59%,Al2O3质量分数降低至21%。在连铸过程中由于二次氧化的发生,夹杂物转变为CaO?Al2O3,其中含有50%的Al2O3、39%的CaO和10%的CaS,并且夹杂物平均尺寸增加。在钢的冷却和凝固过程中,CaO质量分数降低至5%,CaS质量分数增加至57%,钢中夹杂物转变为Al2O3?CaO?CaS的复合夹杂物,同时含有少量大尺寸的CaO?Al2O3夹杂物。在钢的轧制过程中,夹杂物中CaO含量进一步降低,CaS含量增加,夹杂物平均尺寸增加,形成了CaO?Al2O3与CaS黏结型的复合夹杂物与Al2O3?CaS复合夹杂物。对CaO-Al2O3与CaS黏结型的复合夹杂物的形成原因进行了讨论。   相似文献   

8.
通过在321不锈钢熔炼过程中分别添加不同含量的稀土元素钇(Y)和铈(Ce),研究321不锈钢中钛类夹杂物的热力学特征,考察了稀土元素种类及含量对钢中钛类夹杂物成分及形貌的影响。结果表明,未添加稀土元素时,321钢液中典型夹杂物为Ti N和以Al2O3为核心的Al2O3-Ti N复合夹杂物。向钢液中添加稀土元素,当Y添加量为5.0×10-6(质量分数,下同)时,钢液中的典型夹杂物为Al2O3-Y2O3和部分未被改性的Al-O复合夹杂物,随着Y元素含量增加,Al2O3夹杂物被逐渐改性为含钇氧化物,当Y添加量为4.7×10-5时,钢液中的典型夹杂物为Y2O3-Ti N复合夹杂物;当Ce添加量为5.0×10-6时,钢液中的夹杂物主要有Ce-O、Ce-Al-O类夹杂物,A...  相似文献   

9.
为了研究钇对E36船板钢中夹杂物成分和形貌的影响,对钇处理后E36船板钢中典型夹杂物进行热力学计算,并通过扫描电镜及能谱仪对钇处理前后E36船板钢中夹杂物进行检测分析,观察典型夹杂物形态和尺寸。结果表明,未添加稀土钇的E36船板钢主要为长条状MnS夹杂物;添加稀土钇后,钢中夹杂物主要为球状或类球状的含钇复合夹杂物。当钢中钇质量分数为0.007 8%时,夹杂物主要为球状或类球状的Y2O2S夹杂物和Y2O3夹杂物;当钢中钇质量分数增加至0.037 7%时,夹杂物改性为球状或类球状Y2O2S夹杂物、YS夹杂物和Y2O3夹杂物。  相似文献   

10.
对超低碳IF钢钛合金化后的非金属夹杂物进行了分析,研究发现钛合金化后的夹杂物主要为Al2O3和Al?Ti?O夹杂物,没有发现纯TiOx夹杂物。钢中生成的Al?Ti?O复合夹杂物从形貌上均可分为七种类型,四种具有Al2O3外层,另外三种无Al2O3外层。钛合金化后,钢中瞬态生成了大量无Al2O3外层的Al?Ti?O夹杂物,随后夹杂物表面生成Al2O3外层,导致有Al2O3外层的Al?Ti?O夹杂物数量比例逐渐增加至78.0%。热力学计算结果表明,随着钢中钛含量的增加,夹杂物的转变顺序为固态Al2O3→液态Al?Ti?O→固态Ti2O3。确定了Al?Ti?O夹杂物的生成机理过程分为两步:精炼过程钛合金化后,当钢液局部区域的钛的质量分数高于0.42%时,[Ti]与钢液反应瞬态生成Al2O3?TiOx或TiOx;随着精炼过程中钛元素的混匀,含TiOx夹杂物被钢中[Al]还原,Al2O3?TiOx和TiOx夹杂物逐渐转变,在夹杂物表面生成Al2O3。   相似文献   

11.
张静  马宏博  张继  张立峰 《钢铁》2022,57(9):82-94
 以T4003铁素体不锈钢为研究对象,采用热力学计算与实验室试验的方法,对钇质量分数为0、0.007 0%、0.014 0%和0.023 0%的不锈钢中夹杂物进行了分析,研究了稀土元素钇含量对T4003铁素体不锈钢中夹杂物的影响,总结了不同钇含量对钢中夹杂物影响的规律。首先通过计算夹杂物的生成吉布斯自由能变预测了钢中生成的夹杂物种类,总结了不同钇含量试验钢中不同夹杂物的生成吉布斯自由能变随温度的变化规律。计算结果与扫描电镜对钢中夹杂物的检测结果一致。研究表明,不含钇的T4003不锈钢中夹杂物主要为尺寸不均匀的均相TiN夹杂物及少量Al2O3、Mg-Al-O、Ca-Ti-O与TiN的非均相复合夹杂物,添加钇后钢中夹杂物主要为小尺寸的TiN和部分以Y2O3和Y2O2S为核心表面包裹TiN的复合夹杂物。随着钢中钇含量的增加,钢中夹杂物的总含量先增加后减少,夹杂物平均直径先减小后增大。夹杂物中氧化物的改性路径为MgAl2O4-CaO-TiOx→MgAl2O4-Y2O3-(CaO-)TiOx→Y2O3-TiOx→Y2O3-Y2O2S及Y2O3和Y2O2S。试验钢中含TiN夹杂物的数密度与面积分数先增加后减少,平均直径先减小后增大。钇的加入使钢中小于4 μm的小尺寸含TiN夹杂物数量增多,但钇的加入量过高时,含TiN夹杂物的细化程度减弱。当钢中钇质量分数为0.007 0%与0.014 0%时,渣中含TiN夹杂物的尺寸明显减小,大尺寸的含TiN夹杂物数量显著减少。  相似文献   

12.
邵肖静 《炼钢》2023,(4):82-87
为了比较液态和固态夹杂物的去除率,对比了管线钢冶炼过程中常见的四类典型夹杂物Al2O3、MgO-Al2O3、CaO-Al2O3-CaS、CaO-Al2O3在RH真空处理中的去除率。研究结果表明,钢液中的固态夹杂物比液态夹杂物更容易去除。为了得到液态夹杂物不易去除的原因,采用高温激光共聚焦扫描显微镜原位观察了CaO-Al2O3夹杂物在1 600℃钢液中的行为。结果表明,该类夹杂物不易发生聚合长大,随着温度的降低,夹杂物的尺寸进一步增加,其后被凝固基体捕捉。铸坯中大于等于20μm的CaO-Al2O3类夹杂物经轧制后延展就可以造成热轧板中大尺寸夹杂物超标。  相似文献   

13.
焦魁明 《钢铁》2020,55(12):39-45
 为了探究镁处理对40Cr铝镇静钢中夹杂物的影响,在120 t钢包内进行了镁处理工业试验。采用FactSage热力学软件计算了在试验炉钢水成分条件下夹杂物的稳定区域图,镁处理夹杂物的改质路径为Al2O3→Al2O3+MgO·Al2O3→MgO·Al2O3→MgO+ MgO·Al2O3→MgO+MgS;结合金相显微镜和ASPEX-explorer自动扫描电镜分析了镁对40Cr铝镇静钢中夹杂物的形态、尺寸及成分的影响。结果表明,镁处理后,铸坯中夹杂物尺寸及数量较未加镁的试样有明显减少,尺寸主要分布在0~3 μm,夹杂物密度和夹杂物的长宽比明显减小;钢中夹杂物等效直径为0~3 μm的比例大于未添加镁的,这说明镁处理对40Cr铝镇静钢中夹杂物有弥散化及形貌控制的效果。镁处理后的40Cr铝镇静钢中夹杂物主要为MnS包裹MgO·Al2O3为核心的复合夹杂物,而对比炉钢中夹杂物主要为MnS、Al2O3-MnS以及钙铝酸盐类夹杂物。  相似文献   

14.
使用10 kg真空感应炉Al脱氧冶炼较高S含量超低氧高强度钢,钢中T[O]降到0.0010%,S的质量分数为0.0190%.采用ASPEX explorer全自动扫描电镜对钢中非金属夹杂物进行检测,发现98%非金属夹杂物都是弥散分布的MnS和MnS+Al2O3复合夹杂物.MnS夹杂物棱角分明,从形貌特征来看应属于第Ⅲ类硫化物.MnS+Al2O3复合夹杂物以Al2O3为核心,外层包裹MnS,其数量约占9%~32%;作为核心的Al2O3平均直径为1.5μm.其生成过程可描述为:凝固过程中,小尺寸Al2O3被推至固液两相区,而选分结晶作用使得钢中的Mn和S在凝固前沿富集,并以Al2O3作为异质形核质点析出MnS夹杂物.对凝固过程中Al2O3的推动和捕获行为进行了相关计算.计算结果表明:直径小于4μm的Al2O3可被推动,并作为MnS的异质形核质点.   相似文献   

15.
结合高温模拟实验和热力学分析,探讨了稀土对高强车轮钢中夹杂物类型及尺寸分布的影响,并与传统的钙处理钢进行了对比。研究结果表明,铝脱氧车轮钢经钙处理后夹杂物主要为Al2O3、MnS、(Mn, Ca)S和CaO-Al2O3以及Al2O3-(Mn, Ca)S和CaO-Al2O3-CaS包裹型复合夹杂物;与钙处理钢对比,车轮钢经稀土处理后,钢中Al2O3夹杂物数量减少,MnS和(Ca, Mn)S夹杂物消失,生成了近球形的Ce2O2S、Ce2O3夹杂,夹杂物尺寸显著减小;随稀土含量的增加[w(Ce)=0.0160%~0.0250%],不大于5μm的夹杂物数量占比由91.0%提升至99.8%,稀土细化夹杂物效果显著。热力学分析表明:在1600℃条件下,随着车轮钢中w(Ce)由0增加至0.0300...  相似文献   

16.
 为了研究中间包二次氧化对IF钢洁净度的影响,针对中间包连铸过程不同时刻IF 钢钢液成分和夹杂物的性质进行系统的检测分析,结合热力学计算,揭示IF钢二次氧化过程中夹杂物的演变机理。发现开浇过程中的二次氧化主要是由于吸收空气造成的,使得夹杂物中的Al2O3夹杂物质量分数增加。这些增加的Al2O3一部分是均质形核导致钢中生成了更多小尺寸的Al2O3夹杂物;另一部分是非均质形核导致原来的Al2O3-TiOx复合夹杂物表面形成了一层纯的Al2O3层,同时使得夹杂物尺寸变大。  相似文献   

17.
薛辉  高锦国  赵朋  李楠  刘威  杨树峰 《中国冶金》2024,(1):27-35+89
为实现高返回比高温合金洁净化冶炼,研究不同返回料添加比例对高温合金冶炼过程夹杂物演变规律的影响,并结合热力学计算讨论夹杂物析出行为和生成机理。结果表明,返回料添加对高温合金夹杂物种类无明显影响,但对夹杂物数量和尺寸分布影响较大。随返回料比例从0%增加至60%,夹杂物数量密度由19.30个/mm2增加至30.74个/mm2,其中以氧化物为核心的碳氮化物复合夹杂由4.47个/mm2增加至10.11个/mm2,大尺寸(粒径大于5μm)夹杂物所占比例由8.7%增加到13.9%。热力学计算结果表明,MgO·Al2O3夹杂物的理论形核半径随熔体中氧活度的增加而减小,且该夹杂物与TiN夹杂物的晶格错配度较低。添加返回料相比全新料会引入更多的杂质元素,导致MgO·Al2O3夹杂物形核率显著上升,并促进了TiN、Ti(C,N)夹杂物的非均匀形核。形核动力学计算结果表明,返回料添加比例增大,体系中氮的浓度增大,TiN夹杂物更早析出,...  相似文献   

18.
为了尽可能的去除钢中大颗粒的夹杂物, 在实验条件下通过向GCr15轴承钢中添加适量镁、稀土对夹杂物进行改性, 并利用Aspex夹杂物自动分析仪和扫描电镜对钢中改性后的夹杂物尺寸、类型、形貌等进行了观察、分析, 研究了稀土-镁复合处理对夹杂物的影响规律.研究结果表明, 对轴承钢中加入微量镁处理, 可将未进行镁处理钢中的MnS-Al2O3、MnS、Al2O3夹杂改性为以含硫、镁复合夹杂物为主, 同时包含少量Al2O3、镁铝尖晶石夹杂.进一步采用稀土-镁复合处理后, 钢中的夹杂物转变为主要以含Re-S-O夹杂物为主, Al2O3、MnS、镁铝尖晶石夹杂逐步消失, 且夹杂物成球状分布, 绝大多数夹杂物在5 μm以下.稀土-镁复合处理轴承钢后, 10 μm以上的大颗粒夹杂物大大降低, 钢中的夹杂物明显得到细化.钢中镁含量不变时, 随着稀土含量的增加, 大颗粒夹杂物比例明显下降.而在稀土含量相近的情况下, 增加钢中的镁含量也有利于大颗粒夹杂物的去除.稀土-镁的相互作用进一步促进了夹杂物的细化.   相似文献   

19.
Ferrium S53钢作为第3代超高强度不锈钢的典型代表,是海洋环境下耐腐蚀起落架用钢的候选材料之一。稀土是有效的钢液净化剂和提高超高强度钢韧性的重要元素。因此,采用真空感应炉冶炼了无La和微量稀土La处理的Ferrium S53钢,通过光学显微镜、扫描电子显微镜、金属摆锤冲击试验机和万能拉伸试验机对Ferrium S53钢中非金属夹杂物、微观组织和力学性能进行了分析。结果表明,Ferrium S53钢中添加质量分数为0.003%的La后,S质量分数降低至0.006 0%;钢中非金属夹杂物变性为La2O2S和LaAlO3等稀土复合夹杂物,这种夹杂物的变性同步提升了实验钢的强度和塑性,抗拉强度由(1 975±16.6) MPa提升至(2 029±4.8) MPa;塑性由10.77%±0.07%提升至13.76%±0.42%。最后,通过热力学计算进一步解释了稀土La处理钢中夹杂物的生成稳定区域。  相似文献   

20.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号