共查询到20条相似文献,搜索用时 15 毫秒
1.
Min Li Hongtao Kao Chunxiang Qian 《Frontiers of Architecture and Civil Engineering in China》2008,2(3):281-287
To evaluate the remaining durability of concrete materials after combustion, the permeability of high strength concrete (HSC)
after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect
of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion
permeability coefficient (D
c), water permeability coefficient (D
w) and air permeability coefficient (D
a). The experiment results show that all three permeability coefficients commendably reflect changes of permeability. The permeability
coefficient increases with the evaluation temperature. After the same temperature, the permeability coefficient of HSC is
lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is
greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt.
Combining changes of compressive strength and permeability, the remaining durability of concrete materials after combustion
is appropriately evaluated.
__________
Translated from Journal of Southeast University (Natural Science Edition), 2006, 36(5): 825–830 [译自: 东南大学学报(自然科学版)] 相似文献
2.
研究了密度等级为A07~A08级,强度等级为C5的高强高性能泡沫混凝土的制备性能研究,测试了不同类别发泡剂、不同水胶比、细骨料掺量、养护方式对高强高性能泡沫混凝土强度、密度、导热系数的影响。试验结果表明,自行配制的复合发泡剂适合制备A07~A08级泡沫混凝土,而动物蛋白发泡剂不适合;泡沫混凝土的水胶比不宜低于0.45,细骨料掺量范围为10%~20%,泡沫密度宜控制在(50±5)kg/m~3;养护方式可采用蒸汽养护,达到快速出厂蒸养温度宜为60℃,最小蒸养时间为8 h;配制成的高强高性能泡沫混凝土抗压强度为5.7 MPa,密度为718 kg/m~3,导热系数为0.147 W/(m·K)。 相似文献
3.
4.
5.
矿物掺合料对高强混凝土抗裂性能的影响 总被引:1,自引:0,他引:1
抗裂性是高强混凝土最重要的指标之一。以脆性系数和特征长度为高强混凝士抗裂性评价指标,研究矿物掺合料(粉煤灰、硅粉和磨细矿渣)对高强混凝土抗裂性的影响。结果表明,矿物掺合料能有效地降低高强混凝土的脆性系数和特征长度,提高其抗裂性。同时得到抗裂性能最佳的配合比。机理分析表明。掺入细小的高活性磨细矿渣、硅粉和粉煤灰时能极大地改善过渡区的微结构,降低混凝土的Ca(OH)2、钙矾石和孔隙率,提高C-S-H胶体含量,并极大地降低过渡区的原生裂纹,从而提高高强混凝士的抗裂性。 相似文献
6.
高强混凝土高温爆裂抑制措施研究 总被引:1,自引:1,他引:0
首先提出了定量表征混凝土受火爆裂程度的方法,然后研究了4种纤维、1种聚合物乳液和2种防火涂层对硅灰高强混凝土和粉煤灰高强混凝土受火爆裂的抑制效果。研究表明,单丝状、直径较小的聚丙烯纤维可有效抑制爆裂,提出了包裹干纤维表面的、受保护的混凝土柱的直径计算方法,并用以定量描述纤维掺量和直径对抗爆裂的影响。孔结构分析表明:添加物能有效抑制爆裂时,一般表现为试件受火后孔隙率显著提高,最可几孔径发生明显偏移,并且此最可几孔占有一定的数量。防火涂层具有一定的抗爆裂效果,但与涂层本身性能有关。 相似文献
7.
8.
分析了影响高强混凝土试件强度检测结果的主要因素,阐述了试件强度与构件混凝土强度的相关性,并对构件混凝土强度进行了评定,探讨了构件混凝土强度检验中存在的问题,提出了相应的建议. 相似文献
9.
10.
The confinement effect due to the congested transverse reinforcement is a very important feature for reinforced concrete columns subjected to accidental load conditions. The influence of transverse reinforcement spacings on load bearing capacity of high strength concrete (HSC) columns at ambient temperature has been the subject of many research projects, both experimental and theoretical. However, at high temperature the results of research into this subject are scarce and do not provide unambiguous evidence as to the effect of spacing of transverse reinforcement on fire load capacity and fire resistance.The first part of this paper presents an experimental study of the influence of transverse reinforcement spacing on fire resistance of axially loaded, HSC columns with circular cross-section. The results of full-scale tests indicate that columns with spacing of ties recommended by the code provisions for design of concrete structures could suffer a premature failure as a consequence of inelastic buckling of main reinforcing bars between adjacent ties.The next part of the paper concerns the supplementary numerical analysis of tested columns. The columns were modelled in axisymmetry with embedded reinforcement. The applied material model took into account the influence of transient temperature on mechanical properties of concrete and steel. The effect of cracking, development of transient creep strains and plastic strains for concrete were also included in the analysis. The inelastic buckling of main reinforcement was modelled using average stress–strain relationships for steel in compression. The comparison of numerical simulations and experiments shows reasonable agreement. The assessment of failure modes using the numerical simulation is also presented in the paper. The results of calculations indicate that during the whole heating period high thermal gradients generated tensile stresses in the plane of cross-section of the columns. Due to this fact the confinement effect was not observed for the columns with congested spacing of transverse reinforcement. 相似文献
11.
由于混凝土强度越高,脆性越大,限制了混凝土材料的发展及应用,通过试验测量了采用不同掺合物配制的混凝土的断裂韧性、裂纹临界扩展载荷、临界裂纹尖端张开位移和混凝土特征长度,并进行对比分析了各高强混凝土的断裂性能,提出掺加适量的粉煤灰可以增强高强混凝土的韧性,同时也不会显著影响高强混凝土的强度. 相似文献
12.
Compressive strength, gas permeability and carbonation of high performance concrete (HPC) with fly ash (FA) or ground granulated blast furnace slag (GGBFS) were experimentally investigated and the relationships among them were analyzed. Test results showed that influences of FA with replacement up to 60% on these properties investigated are significantly affected by water–binder (w/b) ratios. However, unlike FA, influences of GGBFS on HPC are little affected by w/b ratios, similar changing trends could be observed for both w/b ratios selected. Moreover, HPC with GGBFS shows much better performance than that with FA at the same w/b ratio. In general, replacing FA/GGBFS with cement could not benefit the properties investigated, especially at the higher w/b ratio selected and relationship between compressive strength and gas permeability of HPC greatly depends on w/b ratios and mineral admixture types. Carbonation is obviously related to gas permeability for both HPC with FA/GGBFS. 相似文献
13.
14.
高强混凝土配合比设计及其龄期强度规律研究 总被引:1,自引:0,他引:1
通过对高强混凝土的配合比及其龄期强度的试验研究,分析了高强混凝土配合比设计方法,探讨了高强混凝土龄期强度的发展规律,得到相应的拟合公式,可为高强混凝土的配合比设计及强度预测提供参考. 相似文献
15.
通过混杂纤维混凝土试块的高温后抗压试验,分析了温度、纤维类别和纤维体积率、混凝土基体强度等级对混凝土高温后抗压强度的影响。结果表明:随着经历温度的升高,混杂纤维混凝土高温后的抗压强度及高温后与常温下抗压强度比在400℃之后下降幅度较大;适宜掺量的钢纤维(1%纤维体积率)和聚丙烯纤维(0.1%纤维体积率)能较好的提高混杂纤维混凝土高温后的抗压强度。在试验研究的基础上,建立了考虑温度、钢纤维和聚丙烯纤维体积率共同影响的高温后混杂纤维混凝土抗压强度计算模型,为纤维混凝土结构的抗火设计及灾后处理提供了理论依据。 相似文献
16.
研究了普通混凝土(NC)、聚丙烯纤维混凝土(PPFRC)和聚丙烯腈纤维混凝土(PANFRC)在常温及300,600,1000℃高温后的抗压强度和抗折强度,分析了高温加热方式及加载条件不同的影响。研究表明,300℃高温下混凝土的劣化主要受升温速率的影响;600℃以上高温下混凝土的劣化主要受温度的影响。掺入低掺量的PP纤维和PAN纤维可缓解混凝土的高温劣化,从而提高高温后混凝土的抗压强度和背火面加载时的抗折强度。 相似文献
17.
高强混凝土和钢纤维高强混凝土断裂性能试验研究 总被引:8,自引:0,他引:8
通过对C80高强混凝土(HBC)和钢纤维高强混凝土(SFHSC)试件断裂性能的测试,分析两类混凝土断裂性能特性,并通过多指标与普通混凝土比较,总结HSC和SFHSC的断裂性能。 相似文献
18.
19.
20.
《Construction and Building Materials》2010,24(5):818-823
Pervious concrete has been increasingly used to reduce the amount of runoff water and improve the water quality near pavements and parking lots. However, due to the significantly reduced strength associated with the high porosity, pervious concrete mixtures currently cannot be used in highway pavement structures. A laboratory experiment was conducted in this study to improve the strength properties of pervious concrete through the incorporation of latex polymer. This study focused on the balance between permeability and strength properties of polymer-modified pervious concrete (PMPC). In addition to latex, natural sand and fiber were included to enhance the strength properties of pervious concrete. The test results indicate that it was possible to produce pervious concrete mixture with acceptable permeability and strength through the combination of latex and sand. 相似文献