首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solar adsorption cooling system was constructed in the green building of Shanghai Institute of Building Science. The system consisted of evacuated tube solar collector arrays of area 150 m2, two adsorption chillers with nominal cooling capacity of 8.5 kW for each and a hot water storage tank of 2.5 m3 in volume. A mathematical model of the system was established. According to experimental results under typical weather condition of Shanghai, the average cooling capacity of the system was 15.3 kW during continuous operation for 8 h. The theoretical analysis of the system was verified and found to agree well with the experimental results. The performance analysis showed that solar radiant intensity had a more distinct influence on the performance of solar adsorption cooling system as compared with ambient temperature. It was observed that the cooling capacity increased with the increase of solar collector area, whereas, solar collecting efficiency varied quite contrary. With the increase of water tank volume, cooling capacity decreased, while, the solar collecting efficiency increased. The system performances can be enhanced by increasing the height-to-diameter ratio of water tank. Additionally, it was observed that solar collecting efficiency decreased with the increase of the initial temperature of water in the tank; however, cooling capacity varied on the contrary. Also can be seen is that optimum nondimensional mass flow rate is 0.7 when the specific mass flow rate exceeds 0.012 kg/m2 s.  相似文献   

2.
A solar-driven 10-ton LiBr/H2O single-effect absorption cooling system has been designed and installed at the School of Renewable Energy Technology (SERT), Phitsanulok, Thailand. Construction took place in 2005, after which this system became fully operational and has been supplying cooling for our main testing building's air-conditioning. Data on the system's operation were collected during 2006 and analyzed to find the extent to which solar energy replaced conventional energy sources. Here, we present these data and show that the 72 m2 evacuated tube solar collector delivered a yearly average solar fraction of 81%, while the remaining 19% of thermal energy required by the chiller was supplied by a LPG-fired backup heating unit. We also show that the economics of this cooling system are dominated by the initial cost of the solar collector array and the absorption chiller, which are significantly higher than that of a similar-size conventional VCC system.  相似文献   

3.
By surrounding the absorber-heat exchanger component of a solar collector with a glass-enclosed evacuated space and by providing the absorber with a selective surface, solar collectors can operate at efficiencies exceeding 50 per cent under conditions of ΔT/HT = 75°C m2/kW (ΔT = collector fluid inlet temperature minus ambient temperature, HT = incident solar radiation on a tilted surface). The high performance of these evacuated tubular collectors thus provides the required high temperature inputs (70–88°C) of lithium bromide absorption cooling units, while maintaining high collector efficiency. This paper deals with the performance and analysis of two types of evacuated tubular solar collectors intergrated with the two distinct solar heating and cooling systems installed on CSU Solar Houses I and III.  相似文献   

4.
Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.  相似文献   

5.
This paper presents the theoretical analysis of the performance of solar powered combined adsorption refrigeration cycles that has been designed for Singapore and Malaysia and similar tropical regions using evacuated tube solar collectors. This novel cycle amalgamates the activated carbon (AC)-R507A as the bottoming cycle and activated carbon-R134a cycle as the topping cycle and deliver refrigeration load as low as ?10 °C at the bottoming cycle. A simulation program has been developed for modeling and performance evaluation for the solar driven combined adsorption refrigeration cycle using the meteorological data of Singapore and Malaysia. The results show that the combined cycle is in phase with the weather. The optimum cooling capacity, coefficient of performance (COP) and chiller efficiency are calculated in terms of cycle time, switching time, regeneration and brine inlet temperatures.  相似文献   

6.
In this study, performance assessment of an integrated cooling plant having both free cooling system and solar powered single-effect lithium bromide–water absorption chiller in operation since August 2002 in Oberhausen, Germany, was performed. A floor space of 270 m2 is air-conditioned by the plant. The plant includes 35.17 kW cooling (10-RT) absorption chiller, vacuum tube collectors’ aperture area of 108 m2, hot water storage capacity of 6.8 m3, cold water storage capacity of 1.5 m3 and a 134 kW cooling tower. The results show that free cooling in some cooling months can be up to 70% while it is about 25% during the 5 years period of the plant operation. For sunny clear sky days with equal incident solar radiation, the daily solar heat fraction ranged from 0.33 to 0.41, collectors’ field efficiency ranged from 0.352 to 0.492 and chiller COP varies from 0.37 to 0.81, respectively. The monthly average value of solar heat fraction varies from 31.1% up to 100% and the five years average value of about 60%. The monthly average collectors’ field efficiency value varies from 34.1% up 41.8% and the five-year average value amounts about 28.3%. Based on the obtained results, the specific collector area is 4.23 (m2/kWcold) and the solar energy system support of the institute heating system for the duration from August 2002 to November 2007 is 8124 kWh.  相似文献   

7.
Performance analysis of solar-assisted chemical heat-pump dryer   总被引:1,自引:0,他引:1  
M.I. Fadhel  K. Sopian 《Solar Energy》2010,84(11):1920-1928
A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH3). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COPh) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying.  相似文献   

8.
Institutional buildings contain different types of functional spaces which require different types of heating, ventilating and air conditioning (HVAC) systems. In addition, institutional buildings should be designed to maintain an optimal indoor comfort condition with minimal energy consumption and minimal negative environmental impact. Recently there has been a significant interest in implementing desiccant cooling technologies within institutional buildings. Solar desiccant cooling systems are reliable in performance, environmentally friendly and capable of improving indoor air quality at a lower cost. In this study, a solar desiccant cooling system for an institutional building in subtropical Queensland (Australia) is assessed using TRNSYS 16 software. This system has been designed and installed at the Rockhampton campus of Central Queensland University. The system's technical performance, economic analysis, energy savings, and avoided gas emission are quantified in reference to a conventional HVAC system under the influence of Rockhampton's typical meteorological year. The technical and economic parameters that are used to assess the system's viability are: coefficient of performance (COP), solar fraction, life cycle analysis, payback period, present worth factor and the avoided gas emission. Results showed that, the installed cooling system at Central Queensland University which consists of 10 m2 of solar collectors and a 0.400 m3 of hot water storage tank, achieved a 0.7 COP and 22% of solar fraction during the cooling season. These values can be boosted to 1.2 COP and 69% respectively if 20 m2 of evacuated tube collector's area and 1.5 m3 of solar hot water storage volume are installed.  相似文献   

9.
Ali M. El-Nashar   《Solar Energy》2003,75(5):421-431
The performance of a solar desalination plant (whether using thermal or photovoltaic collectors) is influenced by the ability of the glazing system to transmit solar radiation to the collector absorption surface. This ability is influenced by such factors as the intensity of solar radiation, the transmittance of the collector glazing, the tilt angle of the absorbing surface, the operating parameters of the plant, the properties of the materials of construction, etc. This paper discusses the influence of dust deposition on the evacuated tube collector field on the operating performance of the solar desalination plant at Abu Dhabi, UAE. This plant has a collector field area of 1864 m2 of absorber surface and an MED (multiple effect distillation) unit for seawater desalination with a capacity of 120 m3/day of distilled water. The reduction in transmittance due to dust deposition on the amount of heat collected has been measured and its influence on the distillate production has been estimated using the computer simulation program SOLDES which has been verified previously as an effective tool for predicting the operating performance of similar plant designs. The frequency of high-pressure water jet cleaning on the performance of the plant was also investigated. It was found that dust deposition and its effect on plant performance depend strongly on the season of the year and the frequency of jet cleaning should be adjusted accordingly.  相似文献   

10.
A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H2O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m2 vacuum tube solar collector, a 4.5 kW LiBr/H2O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m2 Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m2 (between 11 and 13.30 h) and ambient temperature of 24 °C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 °C, demonstrating its potential use in cooling domestic scale buildings.  相似文献   

11.
In this paper, a solar hybrid desiccant air conditioning system, which combines the technologies of two-stage desiccant cooling (TSDC) and air-source vapor compression air-conditioning (VAC) together, has been configured, experimentally investigated and theoretically analyzed. The system mainly includes a TSDC unit with design cooling capacity for 10 kW, an air-source VAC unit with 20 kW in nominal cooling capacity, a flat plate solar collector array for 90 m2, a hot water storage tank and a cooling tower. Performance model of the system has been created in TRNSYS simulation studio. The objective of this paper is to report the test result of the solar hybrid air conditioning system and evaluate the energy saving potential, thereby providing useful data for practical application. Experimental results show that, under typical weather condition, the solar driven desiccant cooling unit can achieve an average cooling capacity of 10.9 kW, which contributes 35.7% of the cooling capacity provided by the hybrid system. Corresponding average thermal COP is over 1.0, electric COP is up to 11.48. Under Beijing (temperate), Shanghai (humid) and Hong Kong (extreme humid) weather conditions, the solar TSDC unit can remove about 57%, 69% and 55% of the seasonal moisture load, thereby reducing electric power consumption by about 31%, 34% and 22%, respectively. These suggest that the solar hybrid system is feasible for a wide range of operating conditions.  相似文献   

12.
An analytical study is performed on solar energy utilization in space cooling of a small residential application using a solar lithium bromide absorption system. A simulation program for modeling and performance evaluation of the solar-operated absorption cycle is done for all possible climatic conditions of Beirut. The results have shown that for each ton of refrigeration it is required to have a minimum collector area of 23.3 m2 with an optimal water storage tank capacity ranging from 1000 to 1500 liters for the system to operate solely on solar energy for about seven hours a day. The monthly solar fraction of total energy use in cooling is determined as a function of solar collector area and storage tank capacity.An economic assessment is performed based on current cost of conventional cooling systems. It is found that the solar cooling system is marginally competitive only when combined with domestic water heating.  相似文献   

13.
In recent years, there has been a growing increase of the cooling demand in many parts of the world, which has led to major energy problems. In this context, solar assisted absorption cooling systems have emerged as a promising alternative to conventional vapor compression air conditioning systems, given the fact that in many cases the cooling demand coincide with the availability of solar radiation. In this work, we present a decision-support tool based on mathematical programming for the design of solar assisted absorption cooling systems. The design task is formulated as a bi-criteria mixed-integer nonlinear programming (MINLP) optimization problem that accounts for the minimization of the total cost of the cooling system and the associated environmental impact measured over its entire life cycle. The capabilities of the proposed method are illustrated in a case study that addresses the design of a solar assisted ammonia-water absorption cycle considering weather data of Barcelona (Spain).  相似文献   

14.
《Applied Thermal Engineering》2002,22(12):1313-1325
In this paper the modelling, simulation and total equivalent warming impact (TEWI) of a domestic-size absorption solar cooling system is presented. The system consists of a solar collector, storage tank, a boiler and a LiBr–water absorption refrigerator. Experimentally determined heat and mass transfer coefficients were employed in the design and costing of an 11 kW cooling capacity solar driven absorption cooling machine which, from simulations, was found to have sufficient capacity to satisfy the cooling needs of a well insulated domestic dwelling. The system is modelled with the TRNSYS simulation program using appropriate equations predicting the performance of the unit. The final optimum system consists of 15 m2 compound parabolic collector tilted at 30° from horizontal and 600 l hot water storage tank. The total life cycle cost of a complete system, comprising the collector and the absorption unit, for a lifetime of 20 years will be of the order of C£ 13,380. The cost of the absorption system alone was determined to be C£ 4800. Economic analysis has shown that for such a system to be economically competitive compared to conventional cooling systems its capital cost should be below C£ 2000. The system however has a lower TEWI being 1.2 times smaller compared to conventional cooling systems.  相似文献   

15.
An analytical investigation has been performed to study the possibility of application of solar cooling for the climatic condition of Tokyo, Japan. Silica gel–water adsorption cooling system has been taken into consideration for the present study and lumped parameter model is used to investigate the performance of the system. Based on the solar radiation data it is found that at least 15 collector (each of 2.415 m2) is required to achieve the required heat source temperature (around 85 °C) to run the cooling unit. It is also observed that the solar powered adsorption cooling unit provides cooling capacity around 10 kW at noon with base run conditions, while the system provides solar COP around 0.3, however, the solar collector size can be reduced by optimizing the cycle time.  相似文献   

16.
To study the feasibility of utilizing solar power for comfort cooling in Hong Kong, a solar-powered absorption air-conditioning system was designed and successfully constructed on the campus of the University of Hong Kong (HKU). The system consisted of a flat-plate collector array with a surface area of 38.2 m2, a 4.7-kW nominal cooling capacity LiBr---H2O absorption chiller, a 2.75-m3 hot-water storage tank, a cooling tower, a fan-coil unit, an electrical auxiliary heater, a data-acquisition system and the associated control systems. In the present paper, the design of the HKU solar-powered air-conditioning system is described in detail and its performance over an entire cooling season is also discussed and compared with similar systems in Italy and Singapore. It was found that the HKU solar air-conditioning system had an annual system efficiency of 7.8% and an average solar fraction of 55%.  相似文献   

17.
Thermal storage, low power tariff at night, and low nocturnal temperature can be used in synergy to reduce the cooling costs of the solar-powered absorption chiller cooling systems. This study aims to reduce the required cooling capacity of an absorption chiller (ACH) powered by a solar parabolic trough collector (PTC) and a backup fuel boiler by integrating thermal storage tanks. The thermal performance of the system is simulated for a building that is cooled for 14 h/day. The system uses 1000 m2 PTC with 1020 kW ACH. Chilled water storage (CHWS) and cooling water storage (CWS) effects on the system performance for different operation hours per day of the ACH under Izmir (Turkey) and Phoenix (USA) weather conditions are analyzed. When the ACH operates 14 h/day as the load for both systems and both locations, the variations of the solar collector efficiency and the cooling load to heat input ratio remain less than 4% after the modifications. From the addition of CHWS to the reference system, a parametric study consisting of changing the ACH operation hours per day shows that the required cooling capacity of the ACH can be reduced to 34%. The capacity factor of the ACH is improved from its reference value of 41% up to 96%.  相似文献   

18.
In this paper, a novel integrated solar photovoltaic thermal absorption desalination system for freshwater and cooling production is proposed and analyzed thermodynamically. Ammonia–water pair is considered as a working fluid for the absorption system. Effect of average solar radiation for different months, time period of solar radiation availability in Abu Dhabi, salinity of seawater, and temperature of the seawater on energetic and exergetic COPs, production rate of freshwater, and overall performance of the system are investigated under different operating conditions. It is found that energetic and exergetic COPs, production rate of freshwater, energetic and exergetic utilization factors, and performance ratios vary greatly from one month to another because of the dynamic variation in solar radiation and its time of availability. The highest amount of freshwater is produced in the month of July as calculated to be 152 kg/h for a collector area of 100 m2 and solar power of 4.8 kW. The highest energetic and exergetic COPs and utilization factors are also obtained for the month of July. Moreover, the highest performance ratio is found to be 0.056 as obtained in the month of July when solar radiation intensity is highest as available for more than half of a day. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
S.M. Xu  X.D. Huang 《Solar Energy》2011,85(9):1794-1804
This paper presented a new solar powered absorption refrigeration (SPAR) system with advanced energy storage technology. The advanced energy storage technology referred to the Variable Mass Energy Transformation and Storage (VMETS) technology. The VMETS technology helped to balance the inconsistency between the solar radiation and the air conditioning (AC) load. The aqueous lithium bromide (H2O-LiBr) was used as the working fluid in the system. The energy collected from the solar radiation was first transformed into the chemical potential of the working fluid and stored in the system. Then the chemical potential was transformed into thermal energy by absorption refrigeration when AC was demanded. In the paper, the working principle and the flow of the SPAR system were explained and the dynamic models for numerical simulation were developed. The numerical simulation results can be used to investigate the behavior of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the heat loads of heat exchanger devices and so on. An example was given in the paper. In the example, the system was used in a subtropical city like Shanghai in China and its operating conditions were set as a typical summer day: the outdoor temperature varied between 29.5 °C and 38 °C, the maximum AC load was 15.1 kW and the total AC capacity was 166.1 kW h (598.0 MJ). The simulation results indicated that the coefficient of performance (COP) of the system was 0.7525 or 0.7555 when the condenser was cooled by cooling air or by cooling water respectively and the storage density (SD) was about 368.5 MJ/m3. As a result, the required solar collection area was 66 m2 (cooling air) or 62 m2 (cooling water) respectively. The study paves the road for system design and operation control in the future.  相似文献   

20.
In this paper, the simulation of the performance of solar-assisted heating and cooling systems is analyzed. Three different plant layouts are considered: (i) the first one consists of evacuated solar collectors and a single-stage LiBr–H2O absorption chiller; here in order to integrate the system in case of insufficient solar radiation, an electric water-cooled chiller is activated; (ii) configuration of the secondly considered system is similar to the first one, but the absorption chiller and the solar collector area are sized for balancing about 30% of the building cooling load only; (iii) the layout of the thirdly considered system differs from the first one since the auxiliary electric chiller is replaced by a gas-fired heater. Such system configurations also include: circulation pumps, storage tanks, feedback controllers, mixers, diverters and on/off hysteresis controllers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号