首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Differences in the positional incorporation of 9-trans[1-14C] octadecenoic (elaidic) and 9-trans,12-trans[1-14C] octadecadienoic (linoelaidic) acids in fetal lecithin of rats were demonstrated. On the 20th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparative purposes, 9-cis[1-14C] octadecenoic (oleic) or 9-cis,12-cis[1-14C] octadecadienoic (linoleic acid) was injected into the maternal circulation of rats. Animals were killed 6 hr later. Distribution of label in total lipids and phospholipids (PL) of fetal tissue was measured by TLC. Irrespective of the label, the highest percentage of total radioactivity was associated with PL-59 to 67%. Within PL, the major portion of radioactivity was found in choline phosphoglycerides (CPG)-53 to 67%, and in ethanolamine phosphoglycerides (EPG)-18 to 33%. While linoelaidic acid was predominantly esterified in the 2-position of CPG, elaidic acid was nearly equally distributed between positions 1 and 2 of lecithin. Distribution of radioactivity within fatty acid methyl esters (FAME) of CPG measured by radio-GLC suggested that oleic and possibly linoleic acids may be converted to nervonic and arachidonic acid, respectively, in the rat by the 20th day of gestation. Following injection of elaidate, radioactivity of FAME was distributed between palmitate and elaidic acid indicating that rat fetal tissue may metabolize elaidic acid via β-oxidation. In contrast, following injection of linoelaidate, radioactivity of FAME was primarily associated withtt-18∶2, suggesting little biotransformation to other fatty acids by fetal tissues.  相似文献   

2.
Placental transport of 9-trans [1-14C] octadecenoic (elaidic) and 9-trans,12-trans [1-14C] octadecadienoic (linoelaidic) acids was demonstrated in rats. On the 18th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparison, 9-cis [1-14C] octadecenoic (oleic) or 9-cis,12-cis [1-14C] octadecadienoic (linoleic) acid also was injected into the maternal circulation of rats. All animals were sacrificed 1 hr following injection. Lipid composition and distribution of label were determined in maternal plasma, placental and fetal tissues. Differences in specific activities of plasma, placental and fetal total lipids indicated a decreasing concentration gradient for bothcis andtrans isomers of octadecenoic and octadecadienoic acids. Distribution of radioactivity in various lipid components was determined by thin layer chromatography. Irrespective of the label, the highest percentage of total radioactivity was carried by triglycerides (TG) in maternal plasma (∼60–80%), and was incorporated mainly in phospholipids (PL) of fetal tissues (∼50–60%). A nearly equal distribution of the label was found between PL and TG of placental lipids (∼40%). Radioactivity of fatty acid methyl esters (FAME) determined by radiogas liquid chromatography indicated that after injection of linoelaidate, radioactivity of maternal plasma, placental and fetal tissue FAME was associated only witht,t-18∶2. Following injection of elaidate, all the radioactivity in placental FAME was associated witht-18∶1; however, in fetal tissues, the label was distributed between 16∶0 andt-18∶1. These findings suggest that, in contrast to linoelaidic acid, rat fetal tissues can metabolize elaidic acid via β oxidation to form acetyl CoA and palmitic acid.  相似文献   

3.
Mono- and dienoic acids of lipids from rat milk, rat sucklings, and rats on a fat-deficient diet were investigated. The percentage of uncommon isomers of palmitoleic acid was highest in milk, the newborn and the suckling rats, but receded after weaning. Isomers of linoleic acid were found only in traces in sucklings but became pronounced in rats on diets lacking essential fatty acids. The proportion of 8,11-diene among octadecadienoic acids increased markedly under such conditions within one week and two additional isomers became prominent after longer periods of fat-deficient diet. A supplement of hydrogenated coconut fat did not influence the occurrence of these isomers. Dietary petroselinic acid is incorporated by the rat into tissue lipids. 4-Hexadecenoic and a small amt of 8-eicosenoic acid arise from it. Quantification of isomeric mixtures by ozonization-hydrogenation and subsequent gas-liquid chromatography is discussed in detail.  相似文献   

4.
Three groups of rats were fed diets containing 20% corn oil, 20% margarine stock (MS) or 19% MS +1% corn oil. Diets were fed for 12 weeks, 1 week of pregnancy, 3 weeks of lactation and 8 weeks post-weaning. The incorporation oftrans-octadecenoate into various lipids of the submandibular salivary gland (SMSG) homogenates and plasma membranes was studied.Trans octadecenoate was incorporated into all the lipid fractions studied. Its levels were the highest in phosphatidylethanolamine. The double bond index of phospholipid fatty acids in the plasma membranes of the SMSG was substantially lower in the group fed 20% MS. The fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was generally higher in the membranes of SMSG from rats fed MS than that of the other two groups, thus indicating lower fluidity. Also, the breakpoints in fluorescence polarization were at a higher temperature in the membranes from rats fed MS as compared with those fed corn oil. Lower fluidity of plasma membranes of SMSG observed in rats fed 20% MS may result in modification of the activities of membrane-bound enzymes. Part of this work was presented at the Federation of American Societies for Experimental Biology (FASEB) 68th Annual Meeting, St. Louis, Missouri, April 1984. Alam, S.Q., Alam, B.S., and Banerji, A. Fed. proc. 43,317 (1984).  相似文献   

5.
Summary Analysis of 227 samples of edible fats collected from widely scattered cities of the United States shows that the average percentage of glyceride derived from linoleic acid increases in the order: butter fat, margarine, lard, hydrogenated shortening, and blended shortening containing some hydrogenated fat or animal fat as stiffening agent.  相似文献   

6.
Trans unsaturated fatty acids in bacteria   总被引:1,自引:0,他引:1  
The occurrence oftrans unsaturated fatty acids as by-products of fatty acid transformations carried out by the obligate anaerobic ruminal microflora has been well known for a long time. In recent years, fatty acids withtrans configurations also have been detected in the membrane lipids of various aerobic bacteria. Besides several psychrophilic organisms, bacteria-degrading pollutants, such asPseudomonas putida, are able to synthesize these compoundsde novo. In contrast to thetrans fatty acids formed by rumen bacteria, the membrane constituents of aerobic bacteria are synthesized by a direct isomerization of the complementarycis configuration of the double bond without a shift of the position. This system of isomerization is located in the cytoplasmic membrane. The conversion ofcis unsaturated fatty acids totrans changes the membrane fluidity in response to environmental stimuli, particularly where growth is inhibited due to the presence of high concentrations of toxic substances. Under these conditions, lipid synthesis also stops so that the cells are not able to modify their membrane fluidity by any other mechanism.  相似文献   

7.
When hydroformylation of unsaturated fatty materials is done with rhodium-triphenyl phosphine (or phosphite) catalysts, a number of advantages become apparent compared to cobalt carbonyl-catalyzed reactions. With rhodium, the reaction can be carried out (a) at pressures as low as 200 psi, (b) at each double bond location in a polyunsaturated fatty acid, and (c) in high yield and conversion. Solubilized catalyst can be recovered from distillation residue and readsorbed on spent catalyst support by thermal treatment in a rotary kiln. The reconstituted catalyst is more active than the original catalyst and can be recycled indefinitely at a relatively low cost. Recently developed supports for “homogeneous” catalysis may make catalyst recovery even more effective. Acetalation, oxidation with air to polycarboxylic acids and catalytic hydrogenation to hydroxymethyl compounds can be done easily and in high yield on mono-, di- and triformyl derivatives alike. Other reactions investigated for monoformyl fatty esters include reductive amination to form aminomethyl derivatives and Tollen’s condensation with formaldehyde to form geminal,bis-hydroxymethyl compounds. although the Northern Center has carried out some basic investigations on the hydroformylation reaction and on the chemistry of the hydroformylated products, there is a great deal more that can be done with regard to synthesis of new compounds and development of new applications.  相似文献   

8.
9.
Summary A method is proposed for the preparation of polybasic fat acids or “dimer” acids directly from fatty acids which is readily adaptable to commercial use. The presence of moisture maintained in the reaction vessel by steam pressure substantially prevents decomposition and decarboxylation of the fatty acids. By this method a larger percentage of dibasic acids, as compared to tribasic acids, is produced than by the previously described methods. The method of high temperature polymerization of fatty acids in the presence of moisture is also used to remove polyunsaturated fatty acids from commercial oleic acid. Presented at 20th fall meeting, American Oil Chemists’ Society, Chicago, Ill., Oct. 30–Nov. 1, 1946.  相似文献   

10.
The use of copper and cadmium oxides or soaps as catalysts for the hydrogenation of unsaturated fatty acids to unsaturated fatty alcohols has been investigated. It is shown that copper soaps homogeneously activate hydrogen. When copper and cadmium oxides are used as catalysts, they react with the acid under formation of a homogeneous soap solution. A continuous reaction system for the preparation of unsaturated fatty alcohols by hydrogenation under the influence of copper and cadmium soaps is described.  相似文献   

11.
During heat treatment, polyunsaturated fatty acids and specifically 18∶3n−3 can undergo geometrical isomerization. In rat tissues, 18∶3 Δ9c, 12c, 15t, one of thetrans isomers of linolenic acid, can be desaturated and elongated to givetrans isomers of eicosapentaenoic and docosahexaenoic acids. The present study was undertaken to determine whether such compounds are incorporated into brain structures that are rich in n−3 long-chain polyunsaturated fatty acids. Two fractions enriched intrans isomers of α-linolenic acid were prepared and fed to female adult rats during gestation and lactation. The pups were killed at weaning. Synaptosomes, brain microvessees and retina were shown to contain the highest levels (about 0.5% of total fatty acids) of thetrans isomer of docosahexaenoic acid (22∶6 Δ4c, 7c, 10c, 13c, 16c, 19t). This compound was also observed in myelin and sciatic nerve, but to a lesser extent (0.1% of total fatty acids). However, the ratios of 22∶6trans to 22∶6cis were similar in all the tissues studied. When the diet was deficient in α-linolenic acid, the incorporation oftrans isomers was apparently doubled. However, comparison of the ratios oftrans 18∶3n−3 tocis 18∶3n−3 in the diet revealed that thecis n−3 fatty acids were more easily desaturated and elongated to 22∶6n−3 than the correspondingtrans n−3 fatty acids. An increase in 22∶5n−6 was thus observed, as has previously been described in n−3 fatty acid deficiency. These results encourage further studies to determine whether or not incorporations of suchtrans isomers into tissues may have physiological implications. Presented in part at the 32nd International Conference on the Biochemistry of Lipids, 1991, Granada, Spain. Delta nomenclature (Δ) is used fortrans polyunsaturated fatty acids to specify the position and geometry of ethylenic bonds. Polyunsaturated fatty acids containingtrans double bonds are abbreviated giving the locations of thetrans double bonds only; e.g., 20∶5 Δ17t 20∶5 Δ5c,8c,11c,14c,17t; 22∶5 Δ19t, 22∶5 Δ7c,10c,13c,16c,19t; 22∶6 Δ19t 22∶6 Δ4c,7c,10c,13c,16c,19t.  相似文献   

12.
Wood R 《Lipids》1967,2(3):199-203
Gas-liquid chromatography (GLC) and thin-layer chromatography (TLC) were used to investigate the isomeric positional geometrical isopropylidene derivatives of nine isomeric dihydroxy esters, four isomeric methyl 9,10-12-trihydroxystearates, and eight isomeric methyl 9,10-12,13-tetrahydroxystearates prepared from unsaturated fatty acids. The isopropylidenes derived fromcis andtrans monounsaturated fatty acids were easily separated on both polar and nonpolar columns. Positional isopropylidenes derived from positional isomers of monounsaturated fatty acids were not separated on either liquid phase but were resolved by TLC. Four of the eight isomeric isopropylidenes derived from the four geometrical isomers of linoleic acid were resolved on the polar column; the other four isomers eluted as a single peak. The four isomeric isopropylidene-trifluoroacetate derivatives derived from ricinoleic and ricinelaidic acids were also resolved on the polar column. GLC analyses were carried out with liquid phases of ethylene glycol succinate methyl silicone polymer (EGSS-X) and methyl silicone polymer (SE-30) packed columns. Isopropylidenes, in addition to their applicability for the resolution of polyhydroxy acid mixtures, are particularly useful for the determination of double bond positions and geometrical configurations of fatty acids without cleavage. Under contract with the U. S. Atomic Energy Commission.  相似文献   

13.
14.
15.
Oxygen reacts readily with unsaturated fatty acids so that every time these compounds are handled there is a danger they will become contaminated with oxidation products. The products formed first are allylic hydroperoxides which are labile molecules that change rapidly to other compounds, some of which are highly flavorous. Sometimes these changes are desirable and may be promoted: frequently they are not and have to be inhibited. Instrumental procedures recently introduced—especially separation by high performance liquid chromatography and identification by1H and13C nuclear magnetic resonance spectroscopy—have led to a renewed interest in this subject. For the nonenzymic processes of autoxidation and photooxygenation we now have a better understanding of the routes leading to the first-formed allylic hydroperoxides and an improved appreciation of the structure of further oxidation products including dihydroperoxides and hydroperoxides which also contain one or more cyclic peroxide units. Direct chemical routes to several of these compounds have also been developed. Oxidation of linoleic acid by plant-derived lipoxygenases gives diene hydroperoxides similar to those produced by autoxidation, except that the former are optically active and the latter racemic. Enzymic oxidation of arachidonic acid and certain related C20 acids in animal systems produces a wide variety of prostaglandins, physiological properties. These compounds have been described as “tomorrow’s drugs”.  相似文献   

16.
The effectiveness of different fatty acids as inhibitors of fatty acyl Δ5 desaturation activity in human skin fibroblasts has been investigated. When incubated with 2.25 μM [14C] eicosatrienoate (20∶3ω6) in otherwise lipid-free medium, these cells rapidly incorporate the radiolabeled fatty acid into cellular glycerolipids and desaturate it to produce both [14C] arachidonate and [14C] docosatetraenoate. The Δ5 desaturation activity can be enhanced by prior growth of the cells without serum lipids. Elaidate (9t–18∶1) is a potent inhibitor of Δ5 desaturation whiletrans-vaccenate (11t–18∶1) is virtually without effect. Oleate and linoleate are only mildly inhibitory. Linoelaidate (9t, 12t–18∶2) is more inhibitory than linoleate but significantly less effective than elaidate. The effects of elaidate can be readily overcome by increasing the concentration of exogenous eicosatrienoate. Studies with a variety oftrans monounsaturates of differing chain lengths indicate that the ω9trans fatty acids are potent inhibitors of Δ5 desaturation, while ω7trans fatty acids are relatively ineffective. Intact human fibroblasts could thus be important in characterizing novel fatty acids as selective inhibitors of arachidonate synthesis in vivo.  相似文献   

17.
Diels-Alder reactions with methyl conjuenate ( 2 ) at room temperature, with methyl E-12-oxo-10-octadecenoate ( 11 ) as dienophile and radical cation catalyzed cycloadditions of 2 are described. 2 is prepared from methyl linoleate by base catalyzed isomerization with sodium dimethylsulfoxide in 90% yield. It undergoes readily Diels-Alder reactions at room temperature in the presence of 1–1.8 equivalents of a Lewis acid and catalytic amounts of iodine to form cycloadducts in 55–90% yield. At 140°C 2 reacts with dimethyl maleate and dimethyl acetylenedicarboxylate to cycloadducts in 86% and 73% yield, respectively. Methyl E-12-oxo-10-octadecenoate ( 11 ) can be combined in a Diels-Alder reaction with the dienes 2-(trimethylsilyloxy)-1,3-butadiene and 2,3-dimethylbutadiene in 69% and 86% yield, respectively. By way of radical cation catalysis 2 undergoes [4+2]-cycloadditions with dienes in high yield.  相似文献   

18.
Long‐chain internal olefins were prepared by silver(II)‐catalyzed oxidative decarboxylation of unsaturated fatty acids by sodium peroxydisulfate. Similar to saturated carboxylic acids, 1‐alkenes were the major decarboxylation product in the additional presence of copper(II), whereas in the absence of copper(II) alkanes were predominantly formed. In both cases, the internal unsaturation of the fatty acids remained largely intact, although the moderate yields indicated that side reactions occurred to a significant extent. The simple procedure makes this multistep one‐pot reaction useful for the synthesis of a variety of internally unsaturated hydrocarbons. The purified products, almost all of which are prepared for the first time, may serve as reference compounds for studies on the heterogeneously catalyzed decarboxylation of triglycerides and fatty acids in the absence of hydrogen. Practical applications: The products of the chemistry described in this contribution, i.e., unsaturated long‐chain hydrocarbons, provide bio‐based building blocks for further chemical modification toward products which may be applied as (bio)fuels, lubricants, solvents, and polymeric materials.  相似文献   

19.
Benny Jensen 《Lipids》1976,11(3):179-188
Weanling rats were fed essential fatty acid-deficient diets, either completely fat-free, or with partially hydrogenated fish oil (PHFO, 28 wt %), or with fractions derived from PHFO containing primarily positional isomers oftrans-eicosenoate (20∶1, 3 wt %) ortrans-docosenoate (22∶1, 3 wt %). Control animals were fed a peanut oil-containing diet (28 wt %). After 5 or 15 weeks on the diet, the content of neutral and phosphorus-containing lipids in the testes was determined. The fatty acid distribution in major lipid classes was analyzed for animals fed the diets for 15 weeks. The testicular stage of maturation or degeneration was assessed by histology. The group fed PHFO exhibited signs of complete testicular degeneration, or lack of maturation, already after 5 weeks, whereas the animals on the diets with the very long chain monoenoic acids suffered severe degenerations only after 15 weeks. In the PHFO-fed rats, a sharp decline in the concentration of testicular triacylglycerols was observed. In all of the essential fatty acid-deficient groups, an increase in testicular sphingomyelin was observed. Cholesterol levels were fairly similar among all dietary groups. The total testicular fatty acids of the PHFO-fed animals contained somewhat more eicosadienoic acid than found in the other groups, and somewhat less (n−9)-acids. In all EFA-deficient groups, (n−6)-acids were lowered, in particular in triacylglycerols and phosphatidyl cholines. The PHFO group did not show a lower (n−6)-concentration than the other deficient groups, in spite of the more severe symptoms of deficiency. There was no evidence of a major accumulation of long chain isomeric fatty acids in the degenerated testes of the PHFO-, 20∶1, and 22∶1-fed groups.  相似文献   

20.
Peroxide initiated free radical addition of acetic acid, acetic anhydride and ethyl cyanoacetate to methyl undecylenate and methyl oleate gives interesting and important derivatives in fair to excellent yields. Of these, the most important are the dicarboxylic acids, brassylic and carboxymethylstearic acids. Acetic acid and acetic anhydride both give the same ultimate products but because of the greater amount of by-product in the methyl undecylenate reaction with acetic acid and the need for pressure in the reaction of acetic acid with methyl oleate, acetic anhydride is the preferred addendum for preparing the dicarboxylic acids. There is very little by-product formed in addition of acetic anhydride to methyl undecylenate and methyl oleate. Ethyl cyanoacetate adds readily to both methyl undecylenate and methyl oleate; however, ethyl cyanoacetate is difficult to remove completely from the reaction products. Hydrolysis to destroy it also causes some hydrolysis of the addition products. On the other hand, it is very difficult to hydrolyze completely and subsequently decarboxylate the ethyl cyanoacetate addition products of methyl undecylenate and methyl oleate to obtain dicarboxylic acids. Pressented at the Fall Meeting of the AOCS, Chicago, Ill., October, 1964. E. Utliz. Res. Dev. Div. ARS, USDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号