首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The parametric instability on lateral bending vibrations of a spinning pretwisted beam under compressive axial pulsating forces is investigated. Equations of motion of the twisted beam are derived in the spinning twist coordinate frame using the Timoshenko beam theory and applying the Hamilton’s principle. The finite element method is employed to discretize the equations of motion into time-dependent ordinary differential equations with gyroscopic terms. A set of second-order ordinary differential equations with periodic coefficients of Mathieu-Hill type is formed to obtain the boundary frequencies of instability regimes. The influence of twist angle, spinning speed, static component of axial force, aspect ratio and restraint condition on the instability regions of the spinning twisted Timoshenko beam is discussed.  相似文献   

2.
基于Timoshenko梁理论研究弹性地基上转动功能梯度材料(FGM)梁的自由振动。首先确定功能梯度材料Timoshenko梁的物理中面,利用广义Hamilton原理推导出该梁在弹性地基上转动时横向自由振动的两个控制微分方程。其次采用微分变换法(DTM)对控制微分方程及其边界条件进行变换,计算了弹性地基上转动功能梯度材料Timoshenko梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种不同边界条件下横向自由振动的量纲一固有频率,与已有文献的计算结果进行比较,退化后结果一致。最后讨论了不同边界条件、转速、弹性地基模量和梯度指数对功能梯度材料Timoshenko梁自振频率的影响。结果表明:功能梯度材料Timoshenko梁的量纲一固有频率随量纲一转速和量纲一弹性地基模量的增大而增大;在量纲一转速和量纲一弹性地基模量一定的情况下,梁的量纲一固有频率随着功能梯度材料梯度指数的增大而减小。  相似文献   

3.
A rotating blade with a precone angle is usually designed, but little literature has investigated the effect of the precone angle on vibration. This paper investigates divergence instability and vibration of a rotating Timoshenko beam with precone and pitch angles. It uses Hamilton's principle to derive the coupled governing differential equations and boundary conditions for a rotating Timoshenko beam. Analytical solution of an inextensional Timoshenko beam without taking into account the Coriolis force effect can be derived. Some simple relations among the parameters of rotating Timoshenko beams are revealed. Based on these relations, one can predict the natural frequencies and parameters of other systems from those of known systems. Moreover, the mechanism of divergence instability (tension buckling) is investigated. Finally, the effects of the parameters on natural frequencies, and the phenomenon of divergence instability are investigated.  相似文献   

4.
A mechanically based non-local beam theory is proposed. The key idea is that the equilibrium of each beam volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are modeled as depending on the product of the interacting volume elements, their relative displacement and a material-dependent distance-decaying function. To derive the beam equilibrium equations and the pertinent mechanical boundary conditions, the total elastic potential energy functional is used based on the Timoshenko beam theory. In this manner, the mechanical boundary conditions are found coincident with the corresponding mechanical boundary conditions of classical elasticity theory. Numerical applications are also reported.  相似文献   

5.
The object of this investigation is to develop equations of motion and analyze the eigenproperties of spinning boring trepanning association (BTA) deep-hole drill shafts containing flowing fluid and subject to compressive axial force. The energy formulations are based on a coordinate system attached to the spinning shaft (floating coordinate system), and the equations of motion were derived using Hamilton’s principle. This problem was studied for two different models: a Timoshenko beam model (which includes shear deformation, rotatory inertia moment, and gyroscopic moment effects) and a Euler–Bernoulli beam model. Galerkin’s method was used to obtain solutions of the dynamic system. And two kinds of experimental test were performed to investigate the eigenproperties of spinning BTA deep-hole drill shafts: impulsive testing for non-spinning tool shafts, and random-input excitation testing for spinning tool shafts. Experimental results are also compared with simulation results.  相似文献   

6.
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen’s equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions.analysis.  相似文献   

7.
Free vibration analysis of beams with non-ideal clamped boundary conditions   总被引:1,自引:0,他引:1  
A non-ideal boundary condition is modeled as a linear combination of the ideal simply supported and the ideal clamped boundary conditions with the weighting factors k and 1-k, respectively. The proposed non-ideal boundary model is applied to the free vibration analyses of Euler-Bernoulli beam and Timoshenko beam. The free vibration analysis of the Euler-Bernoulli beam is carried out analytically, and the pseudospectral method is employed to accommodate the non-ideal boundary conditions in the analysis of the free vibration of Timoshenko beam. For the free vibration with the non-ideal boundary condition at one end and the free boundary condition at the other end, the natural frequencies of the beam decrease as k increases. The free vibration where both the ends of a beam are restrained by the non-ideal boundary conditions is also considered. It is found that when the non-ideal boundary conditions are close to the ideal clamped boundary conditions the natural frequencies are reduced noticeably as k increases. When the non-ideal boundary conditions are close to the ideal simply supported boundary conditions, however, the natural frequencies hardly change as k varies, which indicate that the proposed boundary condition model is more suitable to the non-ideal boundary condition close to the ideal clamped boundary condition.  相似文献   

8.
In non-classical micro-beams, the strain energy of the system is obtained based on the non-classical continuum mechanics. This paper presents the problem of boundary control of a vibrating non-classical micro-cantilever Timoshenko beam to achieve the asymptotic decay rate of the closed loop system. For this aim, we need to establish the well-posedness of the governing partial differential equations (PDEs) of motion in presence of boundary feedbacks. A linear control law is constructed to suppress the system vibration. The control forces and moments consist of feedbacks of the velocities and spatial derivatives of them at tip of the micro-beam. To verify the effectiveness of the proposed boundary controllers, numerical simulations of the open loop and closed loop PDE models of the system are worked out using finite element method (FEM). New Timoshenko beam element stiffness and mass matrices are derived based on the strain gradient theory and verification of this new beam element is accomplished.  相似文献   

9.
In this paper, the free vibration of a cantilever Timoshenko beam with a rigid tip mass is analyzed. The mass center of the attached mass need not be coincident with its attachment point to the beam. As a result, the beam can be exposed to both torsional and planar elastic bending deformations. The analysis begins with deriving the governing equations of motion of the system and the corresponding boundary conditions using Hamilton's principle. Next, the derived formulation is transformed into an equivalent dimensionless form. Then, the separation of variables method is utilized to provide the frequency equation of the system. This equation is solved numerically, and the dependency of natural frequencies on various parameters of the tip mass is discussed. Explicit expressions for mode shapes and orthogonality condition are also obtained. Finally, the results obtained by the application of the Timoshenko beam model are compared with those of three other beam models, i.e. Euler–Bernoulli, shear and Rayleigh beam models. In this way, the effects of shear deformation and rotary inertia in the response of the beam are evaluated.  相似文献   

10.
The coupled governing differential equations and the general elastic boundary conditions for the coupled bending–bending forced vibration of a nonuniform pretwisted Timoshenko beam are derived by Hamilton's principle. The closed-form static solution for the general system is obtained. The relation between the static solution and the field transfer matrix is derived. Further, a simple and accurate modified transfer matrix method for studying the dynamic behavior of a Timoshenko beam with arbitrary pretwist is presented. The relation between the steady solution and the frequency equation is revealed. The systems of Rayleigh and Bernoulli–Euler beams can be easily examined by taking the corresponding limiting procedures. The results are compared with those in the literature. Finally, the effects of the shear deformation, the rotary inertia, the ratio of bending rigidities, and the pretwist angle on the natural frequencies are investigated.  相似文献   

11.
A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal Euler-Bernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilton's principle and an efficient meshless method. The effects of slenderness ratio of the nanotube, small scale effect parameter, initial axial force and the stiffness of the surrounding matrix on the natural frequencies of various beam models are investigated for different boundary conditions. The capabilities of the proposed nonlocal beam models in capturing the natural frequencies of the nanotube are also addressed.  相似文献   

12.
New analytical solutions for free vibration of thick nanostructures are presented based on the nonlocal elastic stress field theory and the Timoshenko shear deformable nanobeam model. By applying the variational principle, new governing equations of motion and higher-order boundary conditions for these thick nanobeams are derived and their physical characteristics interpreted. The nonlinear history of straining involving higher-order strain gradients is considered in the derivation of strain energy and the contribution of higher-order strain gradients results in non-classical equations of motion thereby indicating that direct replacement of stress and moment quantities into the classical equations of motion is invalid. The Timoshenko nanobeam models are well suited for modeling and investigating the nonlocal behaviors of size-dependent carbon nanotubes. The effects of nanobeam size and various boundary conditions including simple supports, free and clamp constraints, such as a cantilevered nanotube, on the natural vibration frequency of nanotubes are discussed. The effects of nonlocal nanoscale are confirmed by comparing with molecular dynamic simulation solutions for (5,5) and (10,10) carbon nanotubes with four types of boundary conditions. The influence by nanoscale effect on the frequency ratio of nanotubes with different diameters is investigated. Further analysis based on the analytical nonlocal Timoshenko nanobeam model and the Euler–Bernoulli nanobeam model shows that the frequency ratio is more sensitive to nonlocal effect for free vibration of a nonlocal nanostructure if shear deformation is considered.  相似文献   

13.
In the present paper, buckling loads of rectangular composite plates having nine sets of different boundary conditions and subjected to non-uniform inplane loading are presented considering higher order shear deformation theory (HSDT). As the applied inplane load is non-uniform, the buckling load is evaluated in two steps. In the first step the plane elasticity problem is solved to evaluate the stress distribution within the prebuckling range. Using the above stress distribution the plate buckling equations are derived from the principle of minimum total potential energy. Adopting Galerkin's approximation, the governing partial differential equations are converted into a set of homogeneous linear algebraic equations. The critical buckling load is obtained from the solution of the associated linear eigenvalue problem. The present buckling loads are compared with the published results wherever available. The buckling loads obtained from the present method for plate with various boundary conditions and subjected to non-uniform inplane loading are found to be in excellent agreement with those obtained from commercial software ANSYS. Buckling mode shapes of plate for different boundary conditions with non-uniform inplane loadings are also presented.  相似文献   

14.
Transverse bending vibrations of the spinning microdrill bit subjected to a compressive axial load are developed based on the Timoshenko beam theory. The system equations of motion are discretized into the form of time-dependent ordinary differential equations by the finite element method. Two types of eigenvalue problems are formulated and utilized to study the effects of the drill helix angle, flute length and diameter on the buckling load and critical speed of microdrill bits with different supported ends. Equivalent formulae similar to those of untwisted Euler beams are established to predict critical buckling loads and critical speeds for microdrills and provide results with sufficient accuracy. The effect of rotational speed on the buckling load, and the influence of thrust force on critical speed are also investigated. A Galef-type equation associated with critical speed, thrust force and buckling load is formulated.  相似文献   

15.
In this paper, the nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions subjected to a traveling mass with variable velocity is investigated. The nonlinear coupled partial differential equations of motion for the bending rotation of cross-section, longitudinal and transverse displacements are derived using Hamilton’s principle. These nonlinear coupled PDEs are solved by applying Galerkin’s method to obtain dynamic response of the beam under the act of a moving mass. The appropriate parametric studies by taking into account the effects of the magnitude of the traveling mass, the velocity of the traveling mass with a constant acceleration/deceleration and effect of different beam’s boundary conditions are carried out. The beams’ large deflection has been captured by including the stretching effect of its mid-surface. It was seen that the existence of quadratic-cubic nonlinear terms in the governing coupled PDEs of motion renders hardening/stiffening behavior on the dynamic responses of the beam when traversed by a moving mass. In addition, the obtained nonlinear results are compared with those from the linear analysis.  相似文献   

16.
Nonlinear free vibration and instability of fluid-conveying double-walled boron nitride nanotubes (DWBNNTs) embedded in viscoelastic medium are studied in this paper. The effects of the transverse shear deformation and rotary inertia are considered by utilizing the Timoshenko beam theory. The size effect is applied by the modified couple stress theory and considering a material length scale parameter for beam model. The nonlinear effect is considered by the Von Kármán type geometric nonlinearity. The electromechanical coupling and charge equation are employed to consider the piezoelectric effect. The surrounding viscoelastic medium is described as the linear visco-Pasternak foundation model characterized by the spring and damper. Hamilton’s principle is used to derive the governing equations and boundary conditions. The differential quadrature method (DQM) is employed to discretize the nonlinear higher-order governing equations, which are then solved by a direct iterative method to obtain the nonlinear vibration frequency and critical fluid velocity of fluid-conveying DWBNNTs with clamped-clamped (C-C) boundary conditions. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, spring and damping constants of surrounding viscoelastic medium and fluid velocity on the nonlinear free vibration, instability and electric potential distribution of DWBNNTs. This study might be useful for the design and smart control of nano devices.  相似文献   

17.
In this study, free vibration of simply supported multi-walled carbon nanotubes (CNTs) was investigated by using the generalized shear deformation-beam theory (GSDBT). Parabolic shear deformation theory (PSDT) is used in the specific solutions. Unlike Timoshenko beam theory present theory satisfies zero traction boundary conditions on the upper and lower surface of the structures so there is no need to use a shear correction factor. Free vibration frequencies and amplitude ratios were obtained and results are compared with previous studies. Results showed that significant difference exist between PSDT and Euler beam theory. Present results are slightly higher than the results of Timoshenko beam theory. Shear deformation effects are important especially for higher modes. It is obtained that van der Waals (vdW) forces should be considered for small inner radius.  相似文献   

18.
In this paper, natural frequencies, modes and critical speeds of axially moving beams on different supports are analyzed based on Timoshenko model. The governing differential equation of motion is derived from Newton's second law. The expressions for various boundary conditions are established based on the balance of forces. The complex mode approach is performed. The transverse vibration modes and the natural frequencies are investigated for the beams on different supports. The effects of some parameters, such as axially moving speed, the moment of inertia, and the shear deformation, are examined, respectively, as other parameters are fixed. Some numerical examples are presented to demonstrate the comparisons of natural frequencies for four beam models, namely, Timoshenko model, Rayleigh model, Shear model and Euler–Bernoulli model. Finally, the critical speeds for different boundary conditions are determined and numerically investigated.  相似文献   

19.
The equations of motion of a spinning pre-twisted beam under compressive axial loads are formulated using Euler beam theory and the assumed mode method. The equations of motion are first transformed to the standard form of an eigenvalue problem for determining the critical buckling loads for various combinations of prescribed spinning speeds, aspect ratio of the cross-section and pre-twist angle of the beam. The equations of motion are then transformed to the form of another eigenvalue problem for determining the critical spinning speeds. Both the critical spinning speeds and critical buckling loads are found to exhibit similar trends of variation and curve veering phenomenon with respect to changes in the aspect ratio of the cross-section. For a spinning pre-twisted beam under axial compressive loads, the critical spinning speeds corresponding to divergent behaviours are found to be no longer the dividing points for separating the speed zones into stable and unstable regions, contrary to the stability behaviour of a nonpre-twisted beam which have distinct regions of stable and unstable spinning speed zones separated by critical spinning speeds.  相似文献   

20.
An analytical approach for crack identification procedure in uniform beams with an open edge crack, based on bending vibration measurements, is developed in this research. The cracked beam is modeled as two segments connected by a rotational mass-less linear elastic spring with sectional flexibility, and each segment of the continuous beam is assumed to obey Timoshenko beam theory. The method is based on the assumption that the equivalent spring stiffness does not depend on the frequency of vibration, and may be obtained from fracture mechanics. Six various boundary conditions (i.e., simply supported, simple–clamped, clamped–clamped, simple–free shear, clamped–free shear, and cantilever beam) are considered in this research. Considering appropriate compatibility requirements at the cracked section and the corresponding boundary conditions, closed-form expressions for the characteristic equation of each of the six cracked beams are reached. The results provide simple expressions for the characteristic equations, which are functions of circular natural frequencies, crack location, and crack depth. Methods for solving forward solutions (i.e., determination of natural frequencies of beams knowing the crack parameters) are discussed and verified through a large number of finite-element analyses. By knowing the natural frequencies in bending vibrations, it is possible to study the inverse problem in which the crack location and the sectional flexibility may be determined using the characteristic equation. The crack depth is then computed using the relationship between the sectional flexibility and the crack depth. The proposed analytical method is also validated using numerical studies on cracked beam examples with different boundary conditions. There is quite encouraging agreement between the results of the present study and those numerically obtained by the finite-element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号