首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对平头铣刀的圆形铣削,提出一种适用于圆形铣削的切削力预测方法。建立铣刀与工件交点的数学模型,求解工件与铣刀的时变交点进而计算铣削过程中不断变化的切入角与切出角。同时分析了铣刀轨迹曲率效应对瞬时切削厚度的影响。通过槽铣试验来确定切削力系数。基于微分思想,将圆形铣削过程中的瞬时切削厚度运用到切削力模型中计算微元切削力,然后通过积分法获得切削力值。数值仿真与圆形铣削试验结果表明,预测的铣削力和试验结果在幅值和变化趋势上都吻合良好,从而验证了该切削力预测方法的有效性。  相似文献   

2.
利用金属切削仿真软件Advant Edge对AL6061-T6和STEEL1018两种材料的微细铣削开展有限元仿真模拟,揭示微细铣削中的切削力、切削温度等变化规律,利用切屑的形成过程和切削分力Fx、Fy的不同变化规律,分析了最小切削厚度值。通过两种材料切削比能的变化,分析了微细铣削中存在的切削尺度效应现象。开展了微细铣削槽加工实验,分析了槽铣的加工表面形貌和切削力,为微细铣削工艺参数的优化提供依据。  相似文献   

3.
针对在加工过程中需要大量铣削加工的40CrNiMo合金钢件,为了提高铣刀的切削效率以及提高铣刀的使用寿命,采用DEFORM软件仿真了顺铣方式和逆铣方式下铣刀的切削力分布规律,并对比了铣刀的直径、长度、切削速度和切削深度等参数对铣刀切削力的影响以及铣刀应力分布的影响,为40CrNiMo合金钢的铣削加工方式的选择提供了依据。  相似文献   

4.
针对汽轮机转子轮槽铣削加工中工艺参数难以确定的问题,利用Deform-3D软件对转子轮槽铣削过程中的切削力进行了仿真研究。建立了轮槽铣削仿真模型,分析了不同切削用量在转子轮槽铣削过程中对切削力的影响,找出了背吃刀量等参数对切削力的影响规律,从而为转子轮槽铣削加工过程参数的优化提供了借鉴。  相似文献   

5.
GH4169高温合金在切削加工过程中通常会产生较大的切削力和较高的切削温度,进而难以控制加工表面完整性。借助ABAQUS有限元分析软件中的Johnson-Cook热力耦合模型建立球头铣刀简化模型,对GH4169高温合金的铣削加工过程进行三维有限元模拟仿真,研究GH4169高温合金材料在球铣削过程中的切削力、切削温度、等效塑性应变和应变率的变化与分布规律,并对比分析仿真结果与试验结果的差异。研究结果表明,仿真模型的预测结果与试验测量结果有较好的一致性,所构建的铣削有限元仿真模型为球头铣刀的铣削加工提供了可参考的切削要素。  相似文献   

6.
孔宪俊  王进  刘娜  赵明  侯宁 《工具技术》2022,(12):91-97
为解决四刃平头铣刀铣削钛合金材料时切削力大、切削温度高等问题,利用AdvantEdge FEM仿真软件对四刃平头铣刀进行铣削仿真分析,从刀具应力分布、切屑形貌的方向优化刀具参数,将最佳刀具参数应用于切削参数仿真中,获得铣削Ti-6Al-4V材料的最佳切削参数,并利用试验进行验证。研究表明:基于刀具应力分布以及切屑卷曲状态获得了最优刀具参数;通过不同切削参数的铣削仿真试验获得了最小切削力参数以及最低切削温度参数,并通过试验验证了仿真有效性,为高效铣削Ti-6Al-4V材料提供有价值的理论参考。  相似文献   

7.
纵扭超声铣削残余应力三维有限元仿真与试验   总被引:1,自引:0,他引:1  
针对钛合金等航空难加工材料,提出采用纵扭复合超声振动辅助铣削的加工方法以实现压应力抗疲劳制造。根据侧铣-顺铣加工特性,基于热力耦合作用建立了钛合金铣削等效三维有限元仿真模型,有效提高了计算效率,实现了刀具作为载体的纵扭超声振动仿真。根据铣削残余应力的形成机理,通过机械应力和热应力的加载-释放,完成了加工残余应力的仿真。利用所建立的有限元模型,从切削力、切削温度以及加工残余应力角度出发,对比分析了传统铣削和纵扭超声铣削的差异性,得出纵扭超声振动能够有效降低切削力和切削温度,增大表面压应力值和压应力层深度。通过试验对纵扭超声铣削等效模型进行了验证,结果表明所建立的三维有限元模型能够以较高的精度对切削力、切削温度和加工残余应力进行预测;进一步通过数值模拟研究了刀具几何参数以及超声表征参数对加工残余应力的影响规律,为实现钛合金的压应力制造奠定了基础。  相似文献   

8.
建立了包含振动铣削、移除铣刀、载荷释放及降温等多个分析步的超声振动铣削三维有限元模型,对铣削表面的残余应力进行了仿真。通过有限元计算,得到了不同振动参数和铣削用量条件下加工表面的残余应力大小与分布情况,并根据振动切削表面残余应力的影响机制对仿真结果进行了分析。研究结果表明,对工件施加超声振动后,切削表面残余拉应力值明显减小;振动参数和铣削速度对残余应力的影响较大,而进给量对残余应力的影响较小,并通过相关实验验证了有限元仿真结果的正确性。  相似文献   

9.
钛合金Ti-6Al-4V高压冷却车削过程有限元分析   总被引:1,自引:0,他引:1  
随着钛合金的广泛应用,改善其切削加工性、提高加工表面完整性的试验研究也已得到广泛重视,但对该过程的仿真分析尚不成熟。通过Deform 3D仿真软件建立有限元仿真模型,模拟钛合金Ti-6Al-4V在干切削、普通冷却及高压冷却环境下的车削过程,研究切削环境对切削力、切削温度等加工过程量的影响,获取已加工工件距离加工表面不同深度的残余应力分布,分析高压冷却对钛合金Ti-6Al-4V加工表面残余应力的影响规律。通过钛合金Ti-6Al-4V车削试验测量切削力及刀具表面切削温度,并与有限元仿真模型对比,以验证其可靠性。仿真结果表明:随着切削液压强的增加,切削力增加,刀具表面切削温度降低,高压冷却可有效增强切削液的冷却作用。干切削时,已加工表面(d2=0)为残余拉应力;随着切削液压强的增加,已加工表面残余应力状态逐渐由残余拉应力向残余压应力转变,当切削液压强为200 bar时,已加工表面残余应力为残余压应力,且此时已加工表面残余压应力为最大值。随着测量深度的增加,残余应力值增大,在所有切削试验中,最大残余压应力值均在距离已加工表面相同距离。仿真结果与试验结果的对比证明了有限元仿真模型的可靠性,为钛合金Ti-6Al-4V高压冷却加工热力耦合分析和优化设计提供了理论依据。  相似文献   

10.
利用ABAQUS软件对Cr12MoV冷作模具钢的车削过程进行有限元仿真,模拟了切屑从局部剪切失稳到断裂的过程,预测了刀具与工件的温度,以及已加工表面的残余应力。通过Pro/E软件建立了球头立铣刀的三维CAD模型,在此基础上建立了球头立铣刀铣削加工Cr12MoV冷作模具钢的物理仿真模型,预测了球头立铣刀S形切削刃上的温度分布及切削力。在三轴数控加工中心上进行了球头立铣刀铣削凹圆弧工件的试验,并用KISTLER 9257B测力仪测量了铣削力。仿真得到的铣削力与实验测量得到的铣削力数据误差在15%以内,证明了所建立的铣削仿真模型是正确的。  相似文献   

11.
Centrifugal force assisted abrasive flow machining (CFAAFM) process has recently been tried as a hybrid machining process with the aim towards performance improvement of assisted abrasive flow machining (AFM) process by applying centrifugal force on the abrasive-laden media with a rotating centrifugal force generating (CFG) rod introduced in the workpiece passage. In the CFAAFM process, the surfaces are generated by erosion from random attack of abrasive grains. CFAAFMed surfaces are unidirectional but random in nature due to transient media flow conditions. In the present paper, surface morphology, surface micro-hardness, X-ray analysis, and surface compressive residual stress produced in the finished surface layer by CFAAFM process is described. The CFAAFM process was performed under different rotational speeds of CFG rod while keeping other input parameters constant during the experiments. The increase in surface microhardness and compressive residual stress of the workpiece with an increase in the rotational speed of CFG rod is attributed to the work-hardening surface that possibly occurs due to ‘throw’ of abrasive particles upon specimen surface.  相似文献   

12.
It is well known that machining results in residual stresses in the workpiece. These stresses correlate very closely with the cutting tool geometrical parameters as well as with the machining regime. This paper studies the residual stress induced in turning of AISI 316L steel. Particular attention is paid to the influence of the cutting parameters, such as the cutting speed, feed and depth of cut. In the experiments, the residual stresses have been measured using the X-ray diffraction technique (at the surface of the workpiece and in depth). The effects of cutting conditions on residual stresses are analyzed in association with the experimentally determined cutting forces. The orthogonal components of the cutting force were measured using a piezoelectric dynamometer.  相似文献   

13.
An analytical model based on finite element method is presented for determination of the residual stresses of thermal and mechanical origin due to surface grinding process. The temperature field within the workpiece is determined as the quasi-steady state temperature distribution due to the moving heat source. An iterative procedure is employed for evaluation of the step-by-step movement of the temperature field and the force, in order to simulate the movement of the grinding wheel over the workpiece. Computation of the elastic-plastic stress history culminates in the residual stress state of the workpiece. Influence of the magnitude of mechanical force, the rate of heat input and the speed of movement of workpiece on the residual stress distribution, are discussed.  相似文献   

14.
Pure iron is one of the di cult-to-machine materials due to its large chip deformation, adhesion, work-hardening, and built-up edges formation during machining. This leads to a large workpiece deformation and challenge to meet the required technical indicators. Therefore, under varying the grain size of pure iron, the influence of cutting speed, feed, and depth of cut on the cutting force, heat generation, and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material. The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent. However, the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters.  相似文献   

15.
H13淬硬模具钢精车过程的数值模拟   总被引:4,自引:0,他引:4  
闫洪  夏巨谌 《中国机械工程》2005,16(11):985-989
采用热力学耦合有限元方法研究了淬硬钢精车过程中切屑形成规律。运用H13 淬硬模具钢流动应力模型进行数值模拟,考查了H13淬硬模具钢精车过程中工艺参数对工件性能和刀具的影响。结果表明:切削速度愈高,进给量愈小,刀具刀尖半径愈大,则工件加工层上的静水拉应力愈小,表面质量愈好; 淬硬钢精车时径向力起主要作用,大于切削力;切削速度愈大,切削力和径向力则愈小,愈有助于改善工件加工层上的表面质量;切削速度、进给量和刀具刀尖圆角半径愈大,工件和刀具温度愈高,愈易导致刀具前刀面扩散磨损和刀具后刀面磨损。研究结论有助于优化H13淬硬模具钢精车过程中工艺参数选择和改进刀具镶片设计。  相似文献   

16.
In this paper, a molecular dynamic simulation study was performed to study 3D single-point turning of a monocrystalline copper workpiece with rigid diamond tools at nanometric scale. Morse potential energy function was applied to model the copper/diamond and copper/copper interactions. Two-groove cutting was employed to simulate the surface creation in 3D single-point turning operations. Multiple machining conditions were investigated by considering the effects of rake angle, machining speed, depth of cut, and feed rate. Not surprisingly, in machining both grooves, the tool forces increase with the increase of feed rate and depth of cut, as well as the use of a smaller rake angle. These general observations are consistent with the conventional metal machining at longer length scales. On the other hand, it was found that the increase of machining speed also significantly causes the rise of tool forces. Moreover, the stress and instantaneous temperature distributions in the workpiece were analyzed. It was discovered that for all conditions investigated, the equivalent stress and temperature distributions actually resemble these reported for conventional machining. All cutting parameters affect the magnitude and distribution of stresses to a certain extent, while the machining speed appears to be the dominant factor for the machining temperature.  相似文献   

17.
Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is pro-cessed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy.The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters,material mechanical properties,machine tools,and other parameters.In particular,milling force is the crucial factor to determine material removal and workpiece surface integrity.However,establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system.The research progress of cutting force model is reviewed from three modeling methods:empirical model,finite element simulation,and instantaneous milling force model.The problems of cutting force modeling are also determined.In view of these problems,the future work direction is proposed in the following four aspects:(1)high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth,which easily produces high residual stress.The residual stress should be analyzed under this particular condition.(2)Multiple factors(e.g.,eccentric swing milling parameters,lubrication conditions,tools,tool and workpiece deformation,and size effect)should be consid-ered comprehensively when modeling instantaneous milling forces,especially for micro milling and complex surface machining.(3)The database of milling force model,including the corresponding workpiece materials,working condi-tion,cutting tools(geometric figures and coatings),and other parameters,should be established.(4)The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling.(5)The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication(mql)and nanofluid mql should be predicted.  相似文献   

18.
Wang  Yefang  Zhang  Fan  Yuan  Shouqi  Chen  Ke  Hong  Feng  Appiah  Desmond 《机械工程学报(英文版)》2023,36(1):1-10
Double-sided lapping is an precision machining method capable of obtaining high-precision surface. However, during the lapping process of thin pure copper substrate, the workpiece will be warped due to the influence of residual stress, including the machining stress and initial residual stress, which will deteriorate the flatness of the workpiece and ultimately affect the performance of components. In this study, finite element method (FEM) was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping. Considering the initial residual stress of the workpiece, the stress caused by the lapping and their distribution characteristics, a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters. The results showed that the primary cause of the warping deformation of the workpiece in the double-sided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces. The finite element simulation results were in good agreement with the experimental results.  相似文献   

19.
The influences of cutting parameters on temperature, stress, and shear angle during dry hard orthogonal cutting (DHOC) of D2 tool steel (62?±?1 HRC) are investigated in this paper. Temperature and stress are considered the most important aspects to be taken into account in dry hard machining; however, dry hard machining is a complex process, and the temperature fields and residual stress are the most difficult to be measured. Up to now, only very few studies have been reported on influences of cutting parameters on shear angle, temperature, and stress of AISI D2 tool steel (62?±?1 HRC). In this paper, the Johnson–Cook model is utilized to propose a finite element (FE) model. The FE model is properly calibrated by means of an iterative procedure based on the comparison between experimental resultant forces obtained from literatures and simulated resultant forces. At last, this FE model is utilized to predict the influences of cutting speed and depth of cut on temperature fields and residual stress within a workpiece, cutting tool edge temperature, and shear angle during DHOC hardened AISI D2 tool steel (62?±?1 HRC) and validated by experimental results. As shown in this investigation, it is also possible to properly analyze the influences of cutting parameters on the cutting mechanism for industrial application.  相似文献   

20.
张晓  靳伍银 《工具技术》2017,51(8):45-48
应用DEFORM 3D软件对钛合金高速车削进行仿真研究,分析了不同切削参数下切削力和切削温度的规律,研究发现背吃刀量和进给量对主切削力的影响较大,切削力与主切削力变化基本一致,切削速度对主切削力的影响不明显,但后者对切削温度具有显著影响;研究了工件和刀具温度场的变化规律以及工件所受应力和刀具的磨损情况,发现最高温度出现在切削刃邻近2mm区域内,且温度最高处刀具磨损程度最大,工件最大应力在第一变形区和工件接触区邻近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号