首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A planar InP-based InGaAs heterostructure avalanche photodiode (APD) with a preferential lateral extended guard ring is proposed. Optimum design and device fabrication are described for the planar-structure APD using various-donor-concentration n-InP avalanche layers, separated from the light-absorbing InGaAs layer. High performance results are low dark current, high speed, low noise, and uniform avalanche gain without edge breakdown. The APD yielded a sensitivity as high as -37.4 dBm for a 2-Gb/s 1.57-μm wavelength return-to-zero sequence with 10-9 bit error rate  相似文献   

2.
杜玉杰  邓军  夏伟  牟桐  史衍丽 《激光与红外》2016,46(11):1358-1362
基于碰撞离化理论研究了异质材料超晶格结构对载流子离化率的作用,设计得到In0.53Ga0.47As/In0.52Al0.48As超晶格结构的雪崩光电二极管。通过分析不同结构参数对器件性能的影响,得到了低隧道电流、高倍增因子的超晶格结构雪崩层,根据电场分布方程模拟了器件二维电场分布对电荷层厚度及掺杂的依赖关系,并优化了吸收层的结构参数。对优化得到的器件结构进行仿真并实际制作了探测器件,进行光电特性测试,与同结构普通雪崩光电二极管相比,超晶格雪崩光电二极管具有更强的光电流响应,在12.5~20 V的雪崩倍增区,超晶格雪崩光电二极管在具备高倍增因子的同时具有较低的暗电流,提高了器件的信噪比。  相似文献   

3.
Self-consistent Monte Carlo simulations are used to study the low noise and high gain potential of InSb avalanche photodiodes. It is found that for an electron-initiated avalanche, excess noise factors well below the minimum McIntyre value persist up to gain values of around 60 for a 3.2 /spl mu/m avalanche region. For these very low noise values, it is found that multiplication has a very unusual voltage dependence which may be exploited for highly efficient novel low noise planar arrays operating at low voltage.  相似文献   

4.
4H-SiC avalanche photodiodes edge terminated by a 2° positive bevel have been fabricated and characterised. Low leakage current, positive temperature dependence of breakdown voltage, high avalanche gain and very low noise have been achieved  相似文献   

5.
根据拉曼散射光的特点,选用一种由硅雪崩光电二极管(APD)组成的多像素倍增器件作为光电转换器,设计了一套单光子探测器。为降低探测过程的噪声,探测器部分设计有低纹波偏压、恒温控制和快速雪崩抑制模块,并配有用于雪崩特性研究的测试模块,并通过调整电路参数优化探测性能。测试结果表明:探测器具有响应灵敏度高、分析速度快、体积小巧、功耗低等特点,适合在气体拉曼分析系统中使用。  相似文献   

6.
纳秒脉冲半导体激光驱动器的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了获得高功率、高重复频率的纳秒级光脉冲,介绍了一种基于Marx bank脉冲发生原理的纳秒脉冲激光驱动器的设计,以及设计过程中雪崩晶体管的选取.该驱动器采用一级小雪崩管对触发脉冲进行陡化,由小雪崩管产生的脉冲对Marx bank电路进行触发,以获得大电流窄脉冲,用于驱动半导体激光器.设计所得驱动器的峰值电流为12.5A、半峰全宽为1.51ns、重复频率为100kHz,实现了大幅度纳秒脉冲半导体激光驱动器的设计要求.结果表明,对触发脉冲的陡化,可以降低后一级Marx bank电路的雪崩电压,同时使得脉宽更窄,这将更加有利于驱动半导体激光器.  相似文献   

7.
叶嗣荣  周勋  李艳炯  申志辉 《半导体光电》2016,37(1):175-177,196
为了获得高功率高光束质量激光输出,设计并制备了一种780nm波段5发光单元列阵器件,其采用10μm宽窄条形波导,各发光单元中心间距为100μm,填充因子仅为10%。在准连续注入电流由1.2A增加到2.5A条件下,该器件的输出光束侧向光学参量积由0.666mm·mrad增加至0.782mm·mrad。注入电流为2.5A时,该器件实现了单边准连续506mW的高光束质量激光输出。 更多还原  相似文献   

8.
固体雪崩管快脉冲源的研制   总被引:1,自引:0,他引:1  
固体雪崩管被触发工作在雪崩或二次击穿瞬间时能输出很大的脉冲峰值电流,且触发晃动和上升时间都很小,因此广泛用于制作重复频率低而脉冲功率高的快脉冲源。近几年研制了几种用于纳秒同步机的单管源,应用于产生较宽快沿方波,并且研制出微分波的多管串并联源,应用于纳秒高压产生器中触发氢闸管的多管串联源。  相似文献   

9.
基于InGaAs纳米线的光电探测器,由于其优异的性能而受到广泛的关注和研究。综述了InGaAs纳米线光电探测器的探测机理、材料结构、器件性能和当前的研究现状。讨论了InGaAs纳米线雪崩焦平面探测器结构设计、纳米线材料精密生长、纳米线材料的界面与缺陷控制、纳米线雪崩焦平面器件制备工艺等关键技术。对发展高光子探测效率、低噪声、高增益InGaAs纳米线雪崩焦平面探测器的前景进行了展望。  相似文献   

10.
Optical semiconductor devices, including InGaAsP/InP distributed feedback lasers and InGaAs avalanche photodiodes, are required for high-bit-rate transmission systems. In distributed-feedback lasers, it is important to increase the 3-dB bandwidth, to reduce the frequency chirping, and to stabilize the longitudinal mode under large signal modulation. For avalanche photodiodes, high gain-bandwidth product, low multiplication noise, low multiplied dark current, and low capacitance are key factors. How to realize these characteristics is discussed  相似文献   

11.
High-performance InP/InGaAsP/InGaAs avalanche photodiodes (APDs) grown by chemical beam epitaxy are described. These APDs exhibit low dark current (less than 50 nA at 90% of breakdown), good external quantum efficiency (greater than 90% at a wavelength of 1.3 μm), and high avalanche gain (≃40). In the low-gain regime, bandwidths as high as 8 GHz have been achieved. At higher gains, a gain-bandwidth-limited response is observed; the gain-bandwidth product is 70 GHz  相似文献   

12.
In the microwave solid-state oscillators using bulk effect and avalanche diodes, high dielectric constant ceramics have been used as a temperature compensator and excellent temperature stability is obtained. An X-band avalanche diode oscillator is tested over a wide temperature range. The frequency drift is improved to be less than +30 kHz//spl deg/C. Additional advantages of this technique are compact size and low cost.  相似文献   

13.
Using an analytical model of the avalanche heterophotodiode (AHPhD), principles of selection of its optimal structure are given. The model is based on analytical expressions for the field of the avalanche breakdown of the pn heterostructure and the interband tunnel current in it, which determines the minimum noise level in the AHPhDs based on direct bandgap semiconductors. To reduce the tunnel current, it is necessary to use a structure with separated absorption and multiplication regions. This approach allows one to analytically determine parameters of the structure in which the latter is implemented. In addition, it enables one to analytically determine such parameters and structures of “low–high–low” type that simultaneously provide both the minimum tunnel current and the minimum avalanche noise factor.  相似文献   

14.
For Geiger-mode avalanche photodiodes, the two most important performance metrics for most applications are dark count rate (DCR) and photon detection efficiency (PDE). In 1.06-/spl mu/m separate-absorber-avalanche (multiplier) InP-based devices, the primary sources of dark counts are tunneling through defect levels in the InP avalanche region and thermal generation in the InGaAsP absorber region. PDE is the probability that a photon will be absorbed (quantum efficiency) times the probability that the electron-hole pair generated will actually cause an avalanche. A device model based on experimental data that can simultaneously predict DCR and PDE as a function of overbias and temperature is presented. This model has been found useful in predicting changes in performance as various device parameters, such as avalanche layer thickness, are modified. This has led to designs that are capable simultaneously of low DCR and high PDE.  相似文献   

15.
RF linearity characteristics of SiGe HBTs   总被引:1,自引:0,他引:1  
Two-tone intermodulation in ultrahigh vacuum/chemical vapor deposition SiGe heterojunction bipolar transistors (HBTs) were analyzed using a Volterra-series-based approach that completely distinguishes individual nonlinearities. Avalanche multiplication and collector-base (CB) capacitance were shown to be the dominant nonlinearities in a single-stage common emitter amplifier. At a given Ic an optimum Vce exists for a maximum third-order intercept point (IIP3). The IIP3 is limited by the avalanche multiplication nonlinearity at low Ic, and limited by the CCB nonlinearity at high Ic. The decrease of the avalanche multiplication rate at high Ic is beneficial to linearity in SiGe HBTs. The IIP3 is sensitive to the biasing condition because of strong dependence of the avalanche multiplication current and CB capacitance on Ic and Vce. The load dependence of linearity was attributed to the feedback through the CB capacitance and the avalanche multiplication in the CB junction. Implications on the optimization of the transistor biasing condition and transistor structure for improved linearity are also discussed  相似文献   

16.
The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching(UIS) conditions is measured.This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT,which occur at different current conditions.The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor,which leads to the deterioration of the avalanche reliability of power MOSFETs.However,the results of the IGBT show two different failure behaviors.At high current mode,the failure behavior is similar to the power MOSFETs situation.But at low current mode,the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result.  相似文献   

17.
For Geiger-mode avalanche photodiodes, the two most important performance metrics for most applications are dark count rate (DCR) and photon detection efficiency (PDE). In 1.06-$muhbox m$separate-absorber-avalanche (multiplier) InP-based devices, the primary sources of dark counts are tunneling through defect levels in the InP avalanche region and thermal generation in the InGaAsP absorber region. PDE is the probability that a photon will be absorbed (quantum efficiency) times the probability that the electron–hole pair generated will actually cause an avalanche. A device model based on experimental data that can simultaneously predict DCR and PDE as a function of overbias and temperature is presented. This model has been found useful in predicting changes in performance as various device parameters, such as avalanche layer thickness, are modified. This has led to designs that are capable simultaneously of low DCR and high PDE.  相似文献   

18.
采用雪崩三极管MARX电路易产生亚纳秒导通前沿的高功率微波脉冲,可应用于激光LED驱动、超快脉冲前沿发生器和高速脉冲发生器等。介绍了雪崩三极管器件的工作原理及设计方法,采用针对雪崩模式工作的npn晶体管的特殊工艺设计,研制出了耐压400V,脉冲电流达80A的雪崩三极管器件并已投入批量生产。给出了雪崩三极管MARX使用电路及测试结果,重复频率可达400kHz。器件采用金属管壳片式封装,具有可靠性高、易于级联使用等优点。  相似文献   

19.
This paper presents the impact of high current repetitive avalanche pulses on a low voltage vertical power MOSFET at high temperature. Measurements show that RDSon decreases with the number of avalanche cycles whereas other electrical parameters stay constant. A simple model proposed in this paper shows that RDSon measurements are linked to MOSFET source electrode evolution. Also once source electrode has aged standard RDSon measurements at high current using force and sense are no more representative of silicon on resistance.  相似文献   

20.
This letter addresses the behavior of low voltage power MOSFETs under avalanche, with a paralleling point of view. It is shown that during avalanche, up-to-date technology MOSFET transistors exhibit a resistance far in excess of their on-state resistance (R/sub DSon/). A novel test setup is proposed to measure "avalanche" resistance. A simple model of breakdown voltage is then proposed. It becomes possible to perform fast simulations using this model to study current balance between paralleled transistors under avalanche operation. It is shown that considering avalanche resistance reduces the influence of breakdown voltage mismatches and allows for better current sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号