共查询到16条相似文献,搜索用时 62 毫秒
1.
基于多尺度线调频基稀疏信号分解的广义解调方法及其在齿轮故障诊断中的应用 总被引:1,自引:1,他引:1
在基于多尺度线调频基稀疏信号分解的基础上,提出一种基于多尺度线调频基稀疏信号分解的广义解调方法,并将其应用于非平稳转速状态下的齿轮故障诊断.广义解调可以将时频分布呈曲线变化的多分量非平稳信号转化为时频分布平行于时间轴的平稳信号,因此非平稳信号经广义解调后满足傅里叶分析对平稳性的要求,而如何获取多分量信号的广义解调相位函数是广义解调方法的关键和难点.对信号进行基于多尺度线调频基的稀疏信号分解,得到分量信号的相位函数,再对分量信号进行广义解调和频谱分析得到齿轮故障特征频率.该方法非常适合于分析转速波动齿轮的多分量调幅-调频振动信号,仿真算例和应用实例说明了方法对变速齿轮箱故障诊断的有效性. 相似文献
2.
基于多尺度线调频基稀疏信号分解的轴承故障诊断 总被引:6,自引:1,他引:6
在线调频小波路径追踪算法和稀疏信号分解的基础上,提出一种基于多尺度线调频基的稀疏信号分解方法,并将其应用于非平稳转速下的轴承故障诊断。基于多尺度线调频基的稀疏信号分解方法,根据信号的特点,自适应地选择多尺度的线调频基函数对信号进行投影分解。由于基函数库多尺度特性,使得该方法比以往采用单一尺度库函数的稀疏信号分解方法更适用于分解频率呈曲线变化的非平稳信号。在非恒定转速下,当轴承出现故障时,振动信号中与故障对应的特征频率将会随转速变化而波动,采用基于多尺度线调频基的稀疏信号分解方法能准确获得非平稳转速下轴承故障特征频率随时间的变化情况,进而对其状态和故障特征进行识别,仿真算例和应用实例说明了此方法的有效性。 相似文献
3.
基于稀疏信号分解的自适应时变滤波器及其在齿轮故障诊断中的应用 总被引:1,自引:0,他引:1
提出一种新的自适应时变滤波器设计方法,并将其应用于变速齿轮箱齿轮故障诊断中.齿轮箱振动信号频率成分复杂,特别是多级变速齿轮箱,存在多个啮合频率,而齿轮箱齿轮故障诊断的核心是获取啮合频率的调制状态.在非平稳转速下,如何从复杂振动信号中提取包络调制信号是齿轮箱故障诊断需要解决的关键问题.基于多尺度线调频基(Multi-scale chirplet)的稀疏信号分解方法可以有效地提取频率呈曲线变化的信号分量,适合于载波频率的提取,以该载波频率为滤波器的中心频率,转频的倍频为滤波带宽,设计滤波中心频率曲线变化的自适应时变滤波器,可以有效地将多个包络调制信号分别提取出来,进而可以对变速多级齿轮箱齿轮进行故障诊断.提出的自适应滤波器可以根据信号本身的特点自动改变滤波中心频率和滤波带宽,对信号进行滤波,保留信号的有用频率成分,抑制无用成分.仿真算例和应用实例说明了方法的有效性. 相似文献
4.
针对变转速齿轮箱故障振动信号调制边频带难以识别的问题,提出一种基于多尺度线调频基稀疏信号分解的阶比分析方法.该方法先采用基于多尺度线调频基的稀疏信号分解方法对齿轮箱振动信号进行分解,提取齿轮的啮合分量与调制边频分量,由啮合分量的时频分布曲线得到瞬时转频估计,再基于获得的瞬时转频对啮合分量与调制边频分量之和进行等角度重采样,将非平稳的分量信号转化为平稳信号,对重采样后的信号进行阶比分析,诊断齿轮故障.与传统的直接对齿轮箱故障振动信号进行阶比分析的方法比较,结果表明,提出的基于多尺度线调频基稀疏信号分解的阶比分析方法抗噪性强,调制边频带识别效果好.仿真算例与应用实例验证了本方法的有效性. 相似文献
5.
在多尺度线调频基稀疏信号分解的基础上,提出一种时变系统的模态参数识别方法。该方法先采用多尺度线调频基稀疏信号分解方法对多自由度线性时变振动系统响应信号进行分解,将其分解成多个单模态振动响应信号并得到单模态振动响应信号的瞬时频率;再根据单模态振动响应信号的包络和瞬时频率识别系统的模态频率与模态阻尼比。多自由度线性时变振动系统模态参数的识别算例表明,与经验模态分解等时频分析方法比较,该方法能有效克服系统振动响应信号分解时的模态混淆问题,识别精度高,抗噪性能好,是一种有较大工程应用前景的多自由度线性时变振动系统模态参数识别方法。 相似文献
6.
提出一种基于自适应线调频基原子分解(adaptive chirplet atomic decomposition,ACAD)的时域同步平均方法,并将其应用于低信噪比下变转速齿轮故障诊断。首先对齿轮振动信号进行ACAD分解估计齿轮所在轴的转速曲线;然后根据转速曲线对信号进行等角度重采样,以满足时域同步平均方法对信号周期平稳的要求;再利用时域同步平均方法对重采样信号进行处理,处理后的信号具有很高的信噪比;最后,对其进行FFT变换,其阶次谱上非常清晰地显示齿轮的调制阶次,从而揭示齿轮的故障信息。仿真算例与应用实例证明了该方法的有效性。 相似文献
7.
8.
局部特征尺度分解方法及其在齿轮故障诊断中的应用 总被引:10,自引:0,他引:10
在定义瞬时频率具有物理意义的单分量信号——内禀尺度分量(Intrinsic scale component,ISC)的基础上,提出一种新的自适应信号分解方法——局部特征尺度分解(Local characteristic-scale decomposition,LCD)。LCD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义的ISC分量之和,非常适合于处理多分量的调幅—调频信号。当齿轮发生故障时,其振动信号一般为多分量的调幅—调频信号,因此局部特征尺度分解方法可以有效地应用于齿轮故障诊断。对LCD和经验模态分解(Empirical mode decomposition,EMD)、局部均值分解(Local mean decomposition,LMD)方法进行对比,结果表明了LCD方法的优越性。同时,针对齿轮故障振动信号的调制特征,将LCD方法和包络分析法相结合应用于齿轮故障诊断,对实际的齿轮故障振动信号进行分析,结果表明LCD方法可以有效地应用于齿轮故障诊断。 相似文献
9.
当齿轮出现断齿、裂纹等局部故障时,其振动信号会出现周期性冲击脉冲。在齿轮故障早期,由于冲击脉冲微弱,常淹没在齿轮的啮合频率、转频等谐波成分以及噪声中,因此,对于齿轮早期故障,直接对齿轮振动信号做包络谱分析以诊断齿轮局部故障通常效果不佳。针对这一问题,将信号共振稀疏分解方法与包络谱分析相结合,提出了基于信号共振稀疏分解与包络谱的齿轮故障诊断方法。该方法采用信号共振稀疏分解将冲击脉冲从齿轮振动信号中分离出来,然后对冲击脉冲做Hilbert包络分析,获取冲击脉冲出现的周期,进而对齿轮状态和故障进行识别。仿真算例和应用实例证明了该方法的有效性。 相似文献
10.
针对多级行星齿轮箱中不同齿轮振动特性的不同,提出基于共振稀疏分解(RSSD)的行星齿轮系统多故障诊断方法.该方法使用RSSD将振动信号分解成高低共振分量,根据高低共振分量信号的时频包络谱,提取不同齿轮的故障特征;通过选择合适的品质因子将复杂信号分解为包含不同特征频率的振动分量,可有效地提取隐藏在低共振分量中的齿轮故障信... 相似文献
11.
Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes 总被引:5,自引:0,他引:5
Based on the chirplet path pursuit and the sparse signal decomposition method, a new sparse signal decomposition method based on multi-scale chirplet is proposed and applied to the decomposition of vibration signals from gearboxes in fault diagnosis. An over-complete dictionary with multi-scale chirplets as its atoms is constructed using the method. Because of the multi-scale character, this method is superior to the traditional sparse signal decomposition method wherein only a single scale is adopted, and is more applicable to the decomposition of non-stationary signals with multi-components whose frequencies are time-varying. When there are faults in a gearbox, the vibration signals collected are usually AM-FM signals with multiple components whose frequencies vary with the rotational speed of the shaft. The meshing frequency and modulating frequency, which vary with time, can be derived by the proposed method and can be used in gearbox fault diagnosis under time-varying shaft-rotation speed conditions, where the traditional signal processing methods are always blocked. Both simulations and experiments validate the effectiveness of the proposed method. 相似文献
12.
基于线调频小波路径追踪阶比跟踪算法的齿轮箱故障诊断研究 总被引:2,自引:1,他引:2
针对阶比跟踪转速获取硬件方法需要额外安装转速测量设备,软件方法精度不高、抗噪能力弱的问题,提出基于线调频小波路径追踪瞬时频率估计的齿轮箱阶比跟踪故障诊断方法。该方法利用基于线调频小波路径追踪瞬时频率估计算法适于分解频率呈曲线变化的非平稳信号的特点,采用其对齿轮箱的啮合频率分量进行估计以获取转速信号,依据转速信号对等时间间隔采样信号进行等角度重采样,将非平稳信号转化为角域平稳信号,得到振动信号的阶次谱,判断齿轮箱故障。仿真算例与应用实例表明上述方法在瞬时频率估计方面具有精度高和抗噪能力强的优点,可以根据信号自身的特点自适应的选择基函数,准确地对转速进行估计,其与阶比跟踪算法的结合能有效诊断齿轮箱故障。 相似文献
13.
基于线调频小波路径追踪阶比循环平稳解调的齿轮故障诊断 总被引:5,自引:1,他引:5
为从变转速齿轮箱振动信号中提取齿轮故障特征,提出基于线调频小波路径追踪的阶比循环平稳解调方法。该方法利用线调频小波路径追踪算法估计振动信号中的转速信号,根据转速信号对信号进行等角度采样,获取角域周期平稳信号,求取角域信号的循环自相关函数,在特征循环阶比处对循环自相关函数进行切片,并对切片进行解调分析得到切片解调谱,依据切片解调谱进行齿轮故障诊断。由于线调频小波路径追踪算法具有精度高和抗噪能力强的优点,而循环平稳解调算法可以有效提取淹没在噪声中的周期性故障特征,因而,该方法结合了二者的优点,适合于变转速齿轮信号的故障特征提取。算法仿真和应用实例表明,该方法能有效地提取变转速齿轮箱振动信号中的齿轮故障特征。 相似文献
14.
基于本征时间尺度分解算法的齿轮箱故障诊断 总被引:2,自引:0,他引:2
针对现有信号处理方法在齿轮箱故障诊断中的不足,将本征时间尺度分解算法( IntrinsicTime- scale Decomposition,ITD)应用到齿轮箱故障诊断中.首先介绍了ITD算法;然后将ITD算法应用到齿轮箱的故障诊断中,得到了正确的结论;最后将ITD算法与经验模式分解(EMD)算法进行了比较,结果表明... 相似文献
15.
An approach based an multi-scale chirplet sparse signal de-composition is proposed to separate the multi-component polynomial phase signals, and estimate their instantaneous frequencies. In this paper, we have generated a family of multi-scale chirplet functions which provide good local correlations of chirps over shorter time inter-val. At every decomposition stage, we build the so-called family of chirplets and our idea is to use a structured algorithm which exploits information in the family to chain chirplets together adaptively as to form the polynomial phase signal component whose correlation with the current residue signal is largest. Simultaneously, the polynomial instantaneous frequency is estimated by connecting the linear frequen-cy of the chirplet fixations adopted in the current separation. Simula-tion experiment demonstrated that this method can separate the com-ponents of the multi-component polynomial phase signals effectively even in the low signal-to-noise ratio condition, and estimate its in-stantaneous frequency accurately. 相似文献
16.
齿轮振动信号分解及其在故障诊断中的应用 总被引:2,自引:0,他引:2
对齿轮振动信号的测试及分解进行了研究。根据信号基频,把齿轮振动信号分解为啮合振动与旋转振动,这些振动信号可用于对齿轮状态进行定量研究。基于不同形式的齿轮振动信号,介绍了几种方法来提取信号中的故障信息。利用时域平均技术及齿轮振动信号分解理论对某齿轮箱早期故障信号进行了检测。研究表明,齿轮运动信号分解能够有效检测齿轮的各类故障,高阶加速度信号对齿轮某些类型的早期故障更加敏感。 相似文献