首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
杨惠山 《半导体光电》2013,34(1):16-19,29
采用掺杂和非掺杂方法制备了一种多层白色有机电致发光器件.DPVBi为蓝光发光层,将红光[Ir(piq)2(acac)]磷光掺杂染料掺入到母体BAlq中作为红光发光层,荧光材料QAD以亚单层的方式插入Alq3中作为绿光发光层,通过改变亚单层的厚度,得到了高效率的有机发光器件,此器件的最大电流效率可达6.1 cd/A,最大功率效率达3.1 lm/W,最大亮度达25 300 cd/m2,当电压从4V变化到14V时,色坐标从(0.45,0.55)变化到(0.47,0.37),处于黄白光区.此器件的特点在于器件的性能可以通过简单地调整QAD的厚度进行控制,避免了使用多掺杂层工艺的复杂性.  相似文献   

2.
采用双发光层制作白色有机电致发光器件的工艺研究   总被引:4,自引:1,他引:4  
利用白色OLED是一种实现全彩色显示的方法,因为白光加滤色膜的方式可以获得红、绿、蓝三基色。文章采用双发光层方法,即TBPe掺杂到ADN中作为蓝色发光层,DCJTB掺杂到Alq3中作为红色发光层,从而实现白光显示,器件结构为:ITO/CuPc/NPB/ADN∶TBPE(15nm)/Alq3∶DCJTB(15nm)/Alq3(35nm)/LiF/Al。文章主要研究了发光层厚度和掺杂材料浓度的变化对白色OLED器件发光性能的影响,最终确定了发光层厚度和掺杂剂浓度,当蓝色发光层厚度15nm,红色发光层厚度15nm,TBPe的掺杂浓度(质量分数)为2.8%,DCJTB的掺杂浓度为1.5%时,可以获得最佳的白色器件。与三元共蒸单发光层结构不同,该方法工艺简单,操作过程容易控制,实验重现性高,色纯度好。  相似文献   

3.
实验制作一种多层白色有机发光器件(WOLED)。将 绿光磷光材料和红光磷光材料 Ir(piq)2(acac)共掺到母体BPhen中作为绿光和红光发光层;荧光材料DPVBi作为蓝光发 光层,通过改变掺杂层的厚度,得到了高效率的白色WOLED。器件的最大电流效 率可达4.55cd/ A,14 V时亮度达8489cd/m2 ;当电压从4V变化到12 V时,色坐标从(0.52,0.34)变化到(0.34, 0.26),基本处于白光区。此器件的 特点,在于其性能可以通过简单地调整掺杂层的厚度来控制。  相似文献   

4.
单层结构白色聚合物电致发光器件制备及其性能   总被引:7,自引:4,他引:3  
选择梯形对次苯基聚合物(I.PPP)为母体和蓝色发光材料,掺杂MEH-PPV、OXD-7、PMMA分别作为橙红色发光材料、电子传输材料和绝缘介质材料,用旋涂法制成结构为ITO/白色发光层/A1的单层白色有机发光器件。对器件进行热处理(最佳热处理条件为180℃,1h)后,发现器件的发光性能得到明显改善。驱动电压25V时器件的发光亮度由42cd/m^2提高到355cd/m^2,色坐标为(x=0.332,y=0.347),非常接近于白色等能点。  相似文献   

5.
利用Alq3掺杂在NPB中作为空穴传输层,并以DPVBi和rubrene作为发光层,制备了多层的白光有机发光器件(OLED).与在同一条件下的对比器件相比,掺杂的器件在相同电压下亮度和效率都有所增加.掺杂的器件的最大亮度在17 V时达到了19 921 cd/m2,最大效率在7 V时达到了3.69 cd/A,色坐标(CIE)在5~16 V内几乎没有改变,我们认为,掺杂器件性能的提高是由于掺杂剂Alq3分子对空穴有散射作用,阻挡了部分空穴的传输,降低了空穴的迁移率;而Alq3又是很好的电子传输材料,Alq3掺杂提高了空穴和电子在发光层中的注入平衡,有利于激子的形成,从而提高了器件的性能.  相似文献   

6.
刘秭君  肇杰 《电子测试》2022,(12):56-58
基于荧光材料的有机电致白光发光器件。以DPVBi荧光材料为蓝色荧光发光层,以DPVBi:DCJTB作为第二层发光层,制备了双层荧光材料的白色有机电致发光器件。器件结构为ITO/MoO3/TCTA/DPVBi/DPVBi:DCJTB/TPBi/LiF/CdS/Al。实验过程首先研究了不同掺杂浓度的单层DPVBi:DCJTB有机电致发光器件,发现制备出的器件均显橙黄色,且1%浓度较好,为了获得白光,在此器件结构基础上又加入了一层蓝色荧光材料DPVBi蓝色荧光发光层,并改变DPVBi的位置,同时通过能及匹配的方法调节DPVBi层与DPVBi:DCJTB层厚度,获得的器件均以蓝光为主,为了进一步获得白光,把掺杂浓度变为3%,并重复了第二次实验,发现DPVBi蓝色发光层在掺杂层前面,并且DPVBi层与DPVBi:DCJTB层厚度为15nm和10nm时获得了白光。本内容的创新点为使用TCTA作为空穴传输层,使能级更加匹配,增加了空穴的注入,同时使用CdS作为电子注入层,增加了电子的注入,很好地解决了空穴和电子注入不平衡而带来的效率低的问题,并且通过使用改变掺杂浓度的方法和交换发光层位置的方法获得了...  相似文献   

7.
蓝光OLED的掺杂研究   总被引:1,自引:1,他引:0  
采用蓝色发光材料ADN为主体发光材料、BAlq3为掺杂材料,通过改变BAlq3的掺杂浓度制备了结构为ITO/NPB/ADN:BAlq3/Alq3/Mg:Ag的一系列蓝光有机发光器件(OLED).研究了器件各有机层之间的能级匹配和BAlq3的掺杂浓度对载流子注入、传输、复合以及发光色纯度的影响.实验结果表明,空穴阻挡材料BAlq3的掺入显著影响OLED的电流密度、发光亮度、发光效率和发光光谱,当BAlq3的掺杂浓度为25%时,OLED的发光效率为1.0 lm/W,发光光谱的峰值为440 nm,色纯度为(0.18,0.15),未封装器件的半衰期为950小时,器件同时满足了高效率和高色纯度的要求.  相似文献   

8.
为了利用有机三线态发光提高有机发光器件的发光效率,用磷光材料掺杂到聚合物主体中作为发光层,制备有机电致发光器件.在测量器件的电流-电压特性、发光亮度-电压特性和电致发光谱的基础上,计算了器件的外量子效率,研究了磷光材料的掺杂浓度对器件发光效率的影响.结果表明,对特定的材料体系,适当控制掺杂浓度,可以同时观察到荧光和磷光光谱,使掺杂器件的外量子效率在纯聚合物发光器件的基础上得到明显提高.  相似文献   

9.
为了利用有机三线态发光提高有机发光器件的发光效率,用磷光材料掺杂到聚合物主体中作为发光层,制备有机电致发光器件.在测量器件的电流-电压特性、发光亮度-电压特性和电致发光谱的基础上,计算了器件的外量子效率,研究了磷光材料的掺杂浓度对器件发光效率的影响.结果表明,对特定的材料体系,适当控制掺杂浓度,可以同时观察到荧光和磷光光谱,使掺杂器件的外量子效率在纯聚合物发光器件的基础上得到明显提高.  相似文献   

10.
采用DCJTB作为红色染料,以绿色发光材料Alq,Gaq,Inq作主体材料。分别制备了结构为ITO/TPD/Mq(M=Al^3 ,Ga^3 ,In^3 ):DCJTB/Alq/LiF的一系列红色OLED器件,目的在于研究主体与客体发光分子间的能级匹配情况对载流子的注入、限制、激子的复合及发光色纯度方面的影响。同时研究了DCJTB的掺杂浓度,发光层中发光基质与掺杂染料之间的能带匹配,以及器件的各有机层之间的能带匹配对器件发光性能的影响。分析表明.在ITO/TPD/Alq(Gaq,Inq):DCJTB/Alq/LiF/Al器件中.发光层中存在着从Mq向DCJTB的能量传递,Alq,Gaq,Inq与DCJTB之间的能带匹配显著地影响着这些器件的发光性能,如最大发光亮度、发光效率、色度-电压的关系等。  相似文献   

11.
杜帅  张方辉  程君  李怀坤 《光电子.激光》2015,26(10):1878-1884
使用荧光染料TBPe和Ir(ppy)2acac 、R-4B两种光染料,采用蓝/红绿双发光层的结构,并结合TPBi对空穴的有效限制作用 ,制备了结构为ITO/MoO3(X nm)/ADN:(2%)TBPe(30 nm)/CBP:Ir(ppy)2acac(14%):R-4B(2%)(5nm)/TPBi(10 nm)/Alq3(30nm)/LiF(1nm )/Al(100nm)的磷光与荧光复合的白光OLED,其中,MoO3的厚 分别为0、15、20、30和40nm,通过改变MoO3的厚度调控载流子的注入能力,使用空穴阻挡层提高光效; 通过测量其电压、电流、亮度、色坐标和电致发光(EL)光谱等参数,研究不同厚度的MoO 3对器件发光性能的影响。结果表明,在MoO3厚为20nm的情况下,器件的效率滚降 最为平缓。在电压分别 为8、9、10、11、12和13V时,器件的色坐标分别为 (0.31,0.33)、(0.30,0.33)、(0.29,0.33)、(0.29,0.33)、(0.29,0.33)和(0.29, 0.33),具有较高的稳定性,原因为采用 蓝/红绿双发光层结构更有利于蓝光的 出射,且使用ADN主体材料掺杂蓝色荧光染料TBPe作为蓝光发光层降低三重态-三重态 湮灭几率。 研究还发现,在电压为11V、器件的亮度为9744cd/m2和电流密度为11.50mA/cm2时,最大器件的电流效率为 7.0cd/A。  相似文献   

12.
研制了以镱银合金为透明阴极的顶发射白光OLED器件。采用ITO/NPB: LiQ(5%)(10 nm)/TCTA(20 nm)/FIrpic+3.5% Ir(ppy)3+0.5%Ir(MDQ)2(acac)(25 nm)/TPBI(10 nm)/LiF(5 nm)/Yb: Ag (X%)(X nm)器件结构,在相同镱银比例下,蒸镀不同厚度的镱银合金阴极制备了新型顶发射白光OLED器件,获得了优化的镱银合金厚度为12 nm;固定镱银阴极厚度,蒸镀不同比例的镱银合金阴极制备了新型顶发射白光OLED器件,探究不同比例的镱银合金对有机电致发光器件的影响。结果表明,当镱银电极的掺杂比例为10:1时,器件的性能最佳,在20 mA/cm2电流密度下,器件的驱动电压为2.3 V,亮度为1406 cd/m2,色坐标为(0.3407, 0.3922)。  相似文献   

13.
本文采用一种结构为Ag/MoO_3/Ag的金属/氧化物/金属(M_1/O/M_2)叠层替代ITO作为OLED器件的阳极,研究Ag/MoO_3/Ag叠层结构变化对于OLED器件电极透过率、亮度、光谱等性能的影响。实验采用真空蒸镀方法制备了一系列器件,器件结构为Ag/MoO_3/Ag/MoO_3(10nm)/NPB(40nm)/Alq_3(60nm)/LiF(1nm)/Al(150nm)。对比器件的电压-电流密度、电压-亮度、光谱特性等数据,表明Ag/MoO_3/Ag的结构为20/20/10(nm)时,器件性能较好。在驱动电压为11V时,其亮度达到18 421cd/m~2,电流效率为2.45cd/A;且因器件中存在微腔效应,其EL光谱蓝移,半高宽变窄。但考虑到530nm处其电极透过率仅为17%,所以经换算该器件实际发光亮度比ITO电极器件更高。该Ag/MoO_3/Ag叠层阳极制作相对简单,经优化后在顶发射和柔性OLED器件方面将具有一定的应用前景。  相似文献   

14.
The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al (x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al (x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.  相似文献   

15.
通过改变发光层的厚度,制备了一种双量子阱结构的有机电致发光器件(OLEDs),其结构为ITO/2T-NATA(20nm)/NPBX(50nm)/[Alq3:2%C545(dnm)/Alq3(3nm)]2/Alq3(17nm)/LiF(0.9nm)/Al。在常温下研究了器件的发光层在不同厚度(d=10,15,20和25nm)时的磁电阻(MR,magnetoresistance)特性。实验结果表明,在10V驱动电压的作用下,在相同磁场强度下,器件的厚度越大,电阻率也越大;在驱动电压为10V时,随着磁场强度的增加,10nm厚器件的MR随着磁场的增加而增大,表现正MR特性;而15、20和25nm厚3种器件的MR随着磁场强度的增强先减小后增加并趋于饱和状态,发光层越厚,MR减小的幅度越大,且都表现出负MR特性;获得最大的MR为-10.32%。  相似文献   

16.
以CzHQZn为主体的有机发光器件的发光效率   总被引:1,自引:0,他引:1  
采用真空热蒸镀技术,分别制备了结构为ITO/2T-NATA(25nm)/CzHQZn(10~25nm)/TPBi(35nm)/LiF(0.5nm)/Al、ITO/2T-NATA(30nm)/CBP:6%Ir(ppy)3:x%CzHQZn(20nm)/Alq3(50nm)/LiF(0.5nm)/Al和ITO/2T-NATA(30nm)/CBP:6%Ir(ppy)3:10%CzHQZn(xnm)/Alq3((70-x)nm)/LiF(0.5nm)/Al的3组有机电致发光器件(OLED)。器件中,CzHQZn既有空穴传输特性,又是黄光发射的主体。为了提高其发光效率,利用磷光敏化技术,研究了掺杂层中不同掺杂浓度和掺杂层不同厚度时器件的发光效率。结果表明,器件的效率随着掺杂发光层的厚度和掺杂浓度的变化而改变,当发光层的厚度为18nm时,CzHQZn掺杂浓度为10%的器件性能较好;在10V电压下,器件的最大电流效率达到3.26cd/A,色坐标为(0.4238,0.5064),最大亮度达到17560cd/m2。  相似文献   

17.
采用NPB掺杂石墨烯作为空穴传输层,制备有机电致发光器件(OLED),器件结构为ITO/NPB:Graphene(20wt.%)(50nm)/Alq3(80nm)/LiF(0.5nm)/Al(120nm)。将其与标准器件ITO/NPB(50nm)/Alq3(80nm)/LiF(0.5nm)/Al(120nm)作性能比较,研究石墨烯对OLED性能的影响。结果表明,在NPB中掺杂石墨烯薄层的器件,在同等条件下性能最佳,当电流密度为90mA/cm2时器件电流效率达到最大值3.40cd/A,与标准器件最高效率相比增大1.49倍;亮度在15V时达到最大值10 070cd/m2,比标准器件最大亮度增大5.16倍。  相似文献   

18.
一种新的多发光层白色有机电致发光器件   总被引:2,自引:2,他引:0  
采用多发光层结构,将一种新型的黄橙色荧光染料2-溴-4-氟苯乙烯-8-羟基喹啉锌(BFHQZn,(E)-2-(2-bronw-4-fluorostyryl)quinolato-Zinc)与蓝色9,10-二-2-蔡蔥(ADN)组合在一起实现白光.研究了插入4,4-N,N-二咔唑联苯(CBP)对器件色度的影响,通过改变发光...  相似文献   

19.
一种新型磷光材料的电致发光特性研究   总被引:4,自引:2,他引:2  
设计与合成了一种基于Pt配合物的新型磷光材料(ppy)Pt(bcam),用其制备了相应的磷光器件,器件的结构为ITO/NPB(50 nm)/CBP(15 nm)/(ppy)Pt(bcam)(0.3-2.0 nm)/CBP(15 nm)/BCP(10 nm)/Alq3(20 nm)/Mg:Ag(200 nm),并对器件的相关特性进行了研究。(ppy)Pt(bcam)磷光器件的最大发光波长为625 nm,器件的最大发光波长随驱动电压变化很小,显示了该器件磷光特性非常稳定;磷光发光层厚度为0.5 nm在驱动电压为24.25 V时亮度达到8 755 cd/m2,电流密度为499 A/m2时得到最大的电流效率3.33 cd/A。  相似文献   

20.
有机电致发光器件的发光颜色与色纯度在很大程度上受限于有机材料本身特性,而通过光学微腔效应可以从器件结构的改变来进行色纯度的调节。本文介绍了一种通过调节有机结构中空穴传输层和电子阻挡层厚度,从而改变器件微腔腔长,获得高纯度顶发射单色发光器件的方法。利用这种方法制作的有机顶发射绿色磷光器件结构为Si Substrate/Ag/ITO/ NPB: F16CuPc(10 nm, 3%)/NPB(x nm)/ TCTA(y nm)/ mCP: Ir(ppy)3(40 nm, 6%)/ Bphen: Liq(30 nm, 40%)/Mg: Ag(12 nm, 10%)/Alq3(35 nm),改变NPB和TCTA的厚度,获得了高色纯度发光器件,正向出射绿光的色坐标达到(0.2092,0.7167),接近标准绿光(0.21, 0.71)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号