首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel Poly(3-hydroxybutyrate)/Poly(3-hydroxyoctanoate) blends were developed with varying amounts of Poly(3-hydroxyoctanoate), P(3HO) and Poly(3-hydroxybutyrate), P(3HB) for their potential use in various medical applications. These blend films exhibited higher tensile strength and Young’s modulus values compared to neat P(3HO). The overall protein adsorption and % cell viability was also found to be significantly higher in the blend films than the neat P(3HO) film. Hydrolytic degradation was faster in the blend films and the degradation rate could potentially be tailored to achieve the optimum rate required for a particular medical application. Hence, these novel blends were found to be highly biocompatible with surface, mechanical and thermal properties suitable for a range of potential medical applications, a great step forward in the area of medical materials.  相似文献   

2.
A novel nanocomposite material combining the biocompatible, elastomeric, natural, biodegradable homopolymer poly(3-hydroxyoctanoate) (P(3HO)) with hemostatic and antibacterial bioactive glass nanoparticles (n-BG) was developed as a matrix for skin related applications. P(3HO) is a unique member of the family of natural polyhydroxyalkanoate biopolymers. The P(3HO)/n-BG composite films were fabricated using the solvent casting method. Microstructural studies revealed n-BG particles both embedded in the matrix and deposited on the surface, which introduced nanotopography and increased its hydrophilicity. The composite exhibited an increase in the Young’s modulus when compared to the control, yet maintained flexible elastomeric properties. These changes in the surface topography and chemistry of the composite system led to an increase of protein adsorption and cytocompatibility for the seeded human keratinocyte cell line. The results from this study demonstrated that the fabricated P(3HO)/n-BG composite system is a promising novel matrix material with potential applications in skin tissue engineering and wound healing.  相似文献   

3.
Polymer blends of polyethersulfone (PES) with an all aromatic liquid crystalline co-polyester (LCP) were investigated. In addition, PES oligomers with the reactive functions end groups (?ONa) were added as a third component to the above blends in order to improve their properties. Flexural properties, such as modulus and strength, and dynamic viscoelastic properties, such as dynamic storage elasticity (E′) and loss tangent (tan δ), of the blends were measured. The morphology of blends was characterized using a differential scanning calorimeter (DSC) and a scanning electron microscope (SEM). Of the flexural properties, the modulus of PES increased almost linearly with increasing LCP content. However, strength decreased as LCP content increased to 20 wt%. In contrast, the addition of the PES oligomers had little effect on modulus, but strength was clearly improved. Regarding dynamic viscoelastic properties, the oligomer-containing blends exhibited complex behavior. Regarding morphologies, SEM analysis revealed that the LCP was not fibrous in the core of the blend containing 40 wt% or less, but the addition of the PES oligomers made LCP fibrous even in blends with low LCP content. It was concluded that the PES oligomers with reactive functional groups acted as a compatibilizer in polymer blends of PES/LCP.  相似文献   

4.
Novel bone substitutes such as highly porous ceramic scaffolds can serve as platforms for delivering active molecules. A common problem is to control the release of the drug, therefore, it is beneficial to use a drug-functionalized polymer coating. In this study, β-tricalcium phosphate-based porous scaffolds were obtained and coated with diclofenac-functionalized biopolymer – poly(3-hydroxyoctanoate) – P(3HO). To the best of our knowledge, studies using P(3HO) as a component in ceramic-polymer based drug delivery system for bone tissue regeneration have not yet been reported. Presented materials were comprehensively investigated by various techniques such as powder X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, hydrostatic weighing and compression tests, pH and ionic conductivity measurements, high-performance liquid chromatography and in vitro cytotoxicity studies. The obtained diclofenac-loaded composite was not only characterised by controlled and sustained drug release, but also possessed improved mechanical properties. Moreover, the precipitation of apatite-like forms on its surface was observed after incubation in simulated body fluid, which indicates its bioactive potential. After 24 hours no cytotoxic effect on MC3T3-E1 mouse preosteoblastic cells was confirmed using indirect cytotoxicity studies. Thus, this promising multifunctional composite scaffold can be a promising candidate as an anti-inflammatory drug-delivery system in bone tissue engineering.  相似文献   

5.
In this work, normal blends, microfibrillar blends and composites were prepared from low density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) in 85/15 and 75/25 w/w% ratio in the presence and absence of a compatibilizer polyethylene grafted with maleic anhydride (PE-g-MA). The microfibrillar composites (MFCs) were prepared using extrusion – drawing – isotropization technique. The morphology development of the microfibrillar blends and composites was studied using scanning electron microscopy (SEM). The presence of 5 wt% PE-g-MA compatibilizer affected the continuity of the fibrils differently in 75/25 and 85/15 w/w% microfibrillar blends. In the case of normal blends the addition of compatibiliser reduced the size of the dispersed PET phase. The presence of PET microfibrils improved the tensile properties of the microfibrillar composites. The normal blends exhibited a relatively ductile failure during tensile loading in comparison with the microfibrillar composites. The microfibrillar nature of the dispersed phase was found to improve the stiffness of the composite rather than their impact strength.  相似文献   

6.
A hypothesis on the formation of a non-equilibrium in electrical respect structure in blend compositions induced by generation of free charge carriers and their entrapment during extrusion has been put forward. The electret-thermal analysis (ETA) commonly employed to study electrical polarization of dielectrics has been for the first time used to analyze structures of multicomponent polymer blends. Blend composites turned to have characteristic spectra of thermally stimulated currents (TSC). Potentialities of the ETA have been studied on the polyamide-polyethylene blends containing a compatibilizer—bimodal polyethylene functionalized by maleic anhydride. Peaks on TSC spectra have been identified for each component content and their distribution in the blend. Thermomechanical processing of the studied blends even using specific intensive mixing methods (static and dynamic mixing) did not result in the formation of any new chemical compounds. A conclusion has been derived that the formation of electrically non-equilibrium structure is naturally intrinsic for polymer blend composites.  相似文献   

7.
In this study, we focused on the thermal stability of organic solar cells based on poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), fabricated by blends of P3HT : PCBM : pentacene. Enhanced thermal stability of organic solar cells was achieved by introducing pentacene (Pc) into blends of P3HT : PCBM in organic solar cells with the structure indium tin oxide/ZnO/P3HT : PCBM : Pc/poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate/Ag (ITO/ZnO/P3HT : PCBM : Pc/PEDOT : PSS/Ag). The donor-acceptor interfaces of devices with Pc were more stable than those without Pc in the active layer. During the thermal annealing process, the Pc in the P3HT : PCBM blends suppressed the crystallization of P3HT and PCBM, which was confirmed by optical microscopic images and UV-visible absorption spectra. The power conversion efficiency (PCE) of the device with Pc was reduced to no less than 70 % of its original efficiency after keeping it at 120 °C for 24 hours, while that of the non-Pc device was reduced to 13 % of its original efficiency after 24 hours at the same temperature. Based on these results, we propose a new Pc-blended organic solar cell that has advantages in the thermal annealing process.  相似文献   

8.
The skeleton performs motley of functions. Defected bones and metameric loss of bone are often resulted due to innate abnormalities and accidental injuries. An assessment is made on the diversity of chemistry of phosphazene with an inflection on new developments and their importance in tissue engineering. Tissue engineering mostly uses polymers that can biodegrade in porous/permeable scaffolds form for treating damaged tissues and skeleton. Demand of these polymers is increasing as timely substrates for tissue regeneration in contrast to the mostly used polyethylene terephalate, polyorthoesters, and poly(α-amino acids). Polyphosphazenes as biodegradable polymers have great potential for applications of tissue engineering. Due to biodegradability of P–N backbone, vast diversity of structure and high functional density polyphosphazenes provides many advantages for the formation of biologically compatible macromolecules. However, the nature of the side group determines the degradation ability of such polymers. These biodegradable polymers (polyphosphazenes) provide harmless and pH neutral substances because phosphates and ammonia have high buffer capacity. This review article focuses on the biocompatible polyphosphazenes and their utilization as regeneration of tissues, skeleton, and bones with a particular focus on materials that contains only polyphosphazenes, blends of polyphosphazene, and composites made from polyphosphazene.  相似文献   

9.
A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.  相似文献   

10.
Short fiber composites based on polypropylene (PP)-polyamide (PA) blends were studied using compatibilizers comprising maleic anhydride modified polypropylene. Results have shown that the structure and morphology developed and the resultant mechanical properties of the blend composites strongly depend on the number of acid functional groups in the compatibilizers. The impact strength and tensile modulus of the PP-PA blend composite more than doubled compared with PA and PP short fiber composites, respectively. Furthermore, analytical methods characterizing nonisothermal crystallization were used to investigate the crystallization of fiber containing blends in constrained matrix nucleation mode. Results have shown that interphase interactions are the dominant ones with respect to morphology development. Synergistic effects were obtained that were due to the effect of fibers.  相似文献   

11.
In this study, three usual silane precursors, tetraethoxysilane (TEOS), vinyltrimethoxysilane (VTMS), and 3-methacryloxypropyltrimethoxysilane (MPS), and different binary and triplet blends of them were polymerized via a sol–gel method under acidic conditions. 29Si NMR spectroscopy was used to characterize and quantify the degree of condensation of oligomers. The organic phase was based on a three-acrylate monomer trimethylolpropane triacrylate (TMPTA). The effect of prepared oligomers on the curing behavior of hybrid materials and the interaction between organic and inorganic phases were monitored via photo differential scanning calorimetry (Photo-DSC). Atomic force microscopy (AFM) was used to investigate the surface properties of UV-cured hybrid materials. Photo-DSC results showed that the addition of functionalized oligomers can increase both the photopolymerization rate and the final degree of conversion. They also indicated that oligomers containing MPS are more compatible with the organic phase than other oligomers. Topography and phase trace images of AFM showed that oligomers containing VTMS migrate to the surface of films and affect the water contact angle. In contrast to VTMS, the presence of MPS in oligomers causes the formation of covalent bonds between the organic and inorganic phases in the bulk of the film, and so the surface properties of the film remain unchanged.  相似文献   

12.
A mixed fill system of multiwalled carbon nanotubes (MWCNT) and hydroxylated MWCNT (HO‐MWCNT) in a poly(vinylidene fluoride) (PVDF) matrix was investigated to improve nanotube dispersion and enhance electrical percolation for the bulk nanocomposites. Nonfunctionalized MWCNT were blended at various concentrations into dimethylformamide solutions containing PVDF with 0, 5, or 10 wt % HO‐MWCNT. Composite samples prepared from these solutions were examined by four‐point probe resistivity measurements. The percolation threshold decreased from 0.49 wt % MWCNT in binary MWCNT/PVDF composites to 0.25 wt % for ternary composites containing MWCNT/HO‐MWCNT/PVDF, with either 5 or 10 wt % HO‐MWCNT. In the case of the ternary composite with 10 wt % HO‐MWCNT, the lowest fill percent of MWCNT (0.25 wt %) measured a conductivity that was three orders of magnitude higher than the binary MWCNT/PVDF composite containing twice the concentration of MWCNT (0.5 wt %). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The main objective of this research was to study the potential of waste polypropylene and waste wood for making wood plastic composites (WPCs). The effects of nanoclay (NC), microcrystalline cellulose (MCC), and coupling agent (MAPP) on the mechanical and thermal properties were also studied. The results showed that mechanical properties of the composites made with MCC were significantly superior to those of unfilled. Addition of MAPP could enhance the mechanical and thermal properties of the blends, due to the improvement of interface bond between the filler and matrix. The significant improvements in tensile properties of the blends composites made with MAPP and NC were further supported by SEM micrographs. The thermogravimetric analysis indicated that the addition of 5 wt% MAPP and 3 wt% NC significantly increased the thermal stability of the blends compared to the pure PP. MCC could not improve the thermal stability. The experimental results demonstrated that the waste materials used are promising alternative raw materials for making low cost WPCs.  相似文献   

14.
The curing behavior, mechanical properties, intermolecular interaction, and morphology of silicone, polypyrrole, and polymer electrolyte composites were studied. A rigid‐body pendulum rheometer was used to determine the curing behavior of silicone/PEL blends. The polymer structure was evaluated using FTIR and Differential Scanning Calorimetery. The mechanical properties, including stress, strain, and hardness, were measured using a material testing system. The morphology of the composites was measured using scanning electron micrographs. The intermolecular interaction of the composites was measurement using dynamic mechanical analysis. The results show that the curing reaction rate is fast upon addition of 10 wt % of polymer electrolyte for silicone. The linear molecular structure of the polymer electrolyte was wound around the silicone polymer network structure forming a semi‐interpenetrating network. The intermolecular interaction was influenced by the composites, and the Ppy film effect on the surface of SP10 blends is more uniform than that of silicone. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2754–2764, 2006  相似文献   

15.
用密炼机制备了马来酸酐接枝PP(MPP)和丙烯酸接枝PP(FPP)增容的nano-CaCO3/PP/PS复合材料,用TGA研究复合材料的热降解行为。结果表明:加入nano-CaCO3有助于提高PP/PS共混物的热稳定性,对于提高复合材料的热稳定性,FPP、MPP与nano-CaCO3不存在协同作用;nano-CaCO3/增容PP/PS共混物复合材料的DTG曲线在400℃~500℃间有两个失重速率峰,分别对应PS和PP的热降解。  相似文献   

16.
The objective of this study was to develop novel porous composite scaffolds for bone tissue engineering through surface modification of polycaprolactone–biphasic calcium phosphate‐based composites (PCL–BCP). PCL–BCP composites were first fabricated with salt‐leaching method followed by aminolysis. Layer by layer (LBL) technique was then used to immobilize collagen (Col) and bone morphogenetic protein (BMP‐2) on PCL–BCP scaffolds to develop PCL–BCP–Col–BMP‐2 composite scaffold. The morphology of the composite was examined by scanning electron microscopy (SEM). The efficiency of grafting of Col and BMP‐2 on composite scaffold was measured by X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Both XPS and FTIR confirmed that Col and BMP‐2 were successfully immobilized into PCL–BCP composites. MC3TC3‐E1 preosteoblasts cells were cultivated on composites to determine the effect of Col and BMP‐2 immobilization on cell viability and proliferation. PCL–BCP–Col–BMP‐2 showed more cell attachment, cell viability, and proliferation bone factors compared to PCL–BCP‐Col composites. In addition, in vivo bone formation study using rat models showed that PCL–BCP–Col–BMP‐2 composites had better bone formation than PCL–BCP‐Col scaffold in critical size defect with 4 weeks of duration. These results suggest that PCL–BCP–Col–BMP‐2 composites can enhance bone regeneration in critical size defect in a rat model with 4 weeks of duration. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45186.  相似文献   

17.
Polymer blends comprising liquid crystal polymers, LCP, as a minor component can be formed into fibrillar-type morphology. This morphology enables the generation of improved mechanical properties in the draw direction, in a manner comparable to unidirectional composites: In this paper, the results obtained for blends of a polyetheresteramide block copolymer, PEBA, with a liquid crystalline copolyester are presented. Films prepared using a single-screw extruder were melt drawn on calendering rolls. The blends' storage modulus increased with draw ratio, λ, reaching a maximum value for λ = 3–4. The storage modulus of blends containing 30 wt% LCP, and drawn to λ = 4 to 12, was found to increase nearly 50-fold in comparison to neat PEBA (from 18 MPa to almost 1 GPa). The blends' morphology was characterized by dissolving the PEBA matrix, followed by gravimetric and microscopic analysis of the LCP phase. As expected, the average fiber diameter decreased as a function of λ−0.5. The fiber content as a function of λ followed a trend parallel to that of the modulus. Longitudinal and transverse moduli followed the Halpin-Tsai predictions for unidirectional composites. Properties of compression molded specimens prepared from these blends compared favorably with glass fiber composites.  相似文献   

18.
Biodegradable starch‐polyester polymer composites are useful in many applications ranging from numerous packaging end‐uses to tissue engineering. However the amount of starch that can form composites with polyesters without significant property deterioration is typically less than 25% because of thermodynamic immiscibility between the two polymers. We have developed a reactive extrusion process in which high amounts of starch (approx. 40 wt%) can be blended with a biodegradable polyester (polycaprolactone, PCL) resulting in tough nanocomposite blends with elongational properties approaching that of 100% PCL. We hypothesize that starch was oxidized and then crosslinked with PCL in the presence of an oxidizing/crosslinking agent and modified montmorillonite (MMT) organoclay, thus compatibilizing the two polymers. Starch, PCL, plasticizer, MMT organoclay, oxidizing/crosslinking agent and catalysts were extruded in a co‐rotating twin‐screw extruder and injection molded at 120° C. Elongational properties of reactively extruded starch‐PCL nanocomposite blends approached that of 100% PCL at 3 and 6 wt% organoclay. Strength and modulus remained the same as starch‐PCL composites prepared from simple physical mixing without any crosslinking. X‐ray diffraction results showed mainly intercalated flocculated behavior of clay at 1,3,6, and 9wt% organoclay. Scanning electron microscopy (SEM) showed that there was improved starch‐PCL interfacial adhesion in reactively extruded blends with crosslinking than in starch‐PCL composites without crosslinking. Dynamic mechanical analysis showed changes in primary α‐transition temperatures for both the starch and PCL fractions, reflecting crosslinking changes in the nanocomposite blends at different organoclay contents. Also starch‐polytetramethylene adipate‐co‐terephthalate (PAT) blends prepared by the above reactive extrusion process showed the same trend of elongational properties approaching that of 100% PAT. The reactive extrusion concept can be extended to other starch‐PCL like polymer blends with polymers like polyvinyl alcohol on one side and polybutylene succinate, polyhydroxy butyrate‐valerate and polylactic acid on the other to create cheap, novel and compatible biodegradable polymer blends with increased toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1072–1082, 2005  相似文献   

19.
The effects of various additives on the performance of 2,2′‐bis[4‐(methacryloxy‐2‐hydroxy‐propoxy)‐phenyl]‐propane (Bis‐GMA)/barium glass powder (Ba) composites were examined. Bis‐GMA/Ba composites were manufactured by curing with visible light to measure various mechanical properties. The diametral tensile strengths (DTS) of Bis‐GMA/Ba composites were the primary focus of this investigation. The main additives used were trimethylolpropyltrimethacrylate (TMPT), 1,4‐bis‐(tri‐methoxysilylethyl) benzene (BTB), and cationic styryl silane. These additives were applied as both integral blends and aqueous pretreatments. Besides the DTS, Vickers hardness of cured matrix resins and the viscosity of composite pastes were measured to study the properties of the matrix resins and the processibility of the composites, respectively. Integral blends showed similar processibility to aqueous pretreatments. The addition of TMPT to the matrix resins increased Vickers hardness of integral blend systems as a result of its trimethacrylate functional group. BTB was useful in increasing the wet DTS of Bis‐GMA/silane–treated Ba composites. STS was effective in improving the performance of Bis‐GMA/Ba composites in the cases of both the integral blends and aqueous pretreatments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1085–1092, 2000  相似文献   

20.
Commercially available organosilane (3‐glycidoxypropyltrimethoxysilane (GPTMS)) coupling agent was used to treat talc in order to improve the affinity relative between the filler and the polymer in composites as well as filler and polymer in the thermoplastic polyurethane/polypropylene (TPU/PP) blends (talc content was 5 wt%). The talc particles were first modified with GPTMS and then introduced into TPU, PP as well as TPU/PP blends with different weight ratios of polymers using blending method and subsequently injection molded in a hydraulic press. The aim was to report the effect of silane coupling agent on the thermal and morphological properties of talc filled composites and blends. The results showed that the thermal properties of the TPU, PP composites and TPU/PP blends were improved with the addition of silane treated talc (higher melting (Tm), crystallization (Tc) temperatures and degree of crystallinity (χc)). The glass transition temperature (Tg) obtained by dynamic mechanical analysis (DMA) of the TPU soft segments in TPU/PP blends increased with the addition of untreated and silane treated talc due to lower mobility of the soft segments in TPU and better miscibility of TPU and PP. TPU/PP blends with the silane treated talc show better thermal stability than the TPU/PP blends with untreated talc. POLYM. ENG. SCI., 55:1920–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号