首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.  相似文献   

2.
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.  相似文献   

3.
Chimeric antigen receptor (CAR)-T cells are effective in the treatment of hematologic malignancies but have shown limited efficacy against solid tumors. Here, we demonstrated an approach to inhibit recurrence of B cell lymphoma by co-expressing both a human anti-CD19-specific single-chain variable fragment (scFv) CAR (CD19 CAR) and a TGF-β/IL-7 chimeric switch receptor (tTRII-I7R) in T cells (CD19 CAR-tTRII-I7R-T cells). The tTRII-I7R was designed to convert immunosuppressive TGF-β signaling into immune-activating IL-7 signaling. The effect of TGF-β on CD19 CAR-tTRII-I7R-T cells was assessed by western blotting. Target-specific killing by CD19 CAR-tTRII-I7R-T cells was evaluated by Eu-TDA assay. Daudi tumor-bearing NSG (NOD/SCID/IL2Rγ-/-) mice were treated with CD19 CAR-tTRII-I7R-T cells to analyze the in vivo anti-tumor effect. In vitro, CD19 CAR-tTRII-I7R-T cells had a lower level of phosphorylated SMAD2 and a higher level of target-specific cytotoxicity than controls in the presence of rhTGF-β1. In the animal model, the overall survival and recurrence-free survival of mice that received CD19 CAR-tTRII-I7R-T cells were significantly longer than in control mice. These findings strongly suggest that CD19 CAR-tTRII-I7R-T cell therapy provides a new strategy for long-lasting, TGF-β-resistant anti-tumor effects against B cell lymphoma, which may lead ultimately to increased clinical efficacy.  相似文献   

4.
5.
6.
Enamel matrix derivative (EMD) prepared from extracted porcine fetal tooth material can support the regrow of periodontal tissues. Previous findings suggest that EMD has anti-inflammatory properties and TGF-β activity in vitro. However, the anti-inflammatory activity of EMD is mediated via TGF-β has not been considered. To this aim, we first established a bioassay to confirm the anti-inflammatory activity of EMD. The bioassay was based on the RAW 264.7 macrophage cell line and proven with primary macrophages where EMD significantly reduced the forced expression of IL-6. We then confirmed the presence of TGF-β1 in EMD by immunoassay and by provoking the Smad2/3 nuclear translocation in RAW 264.7 macrophages. Next, we took advantage of the TGF-β receptor type I kinase-inhibitor SB431542 to block the respective signalling pathway. SB431542 reversed the anti-inflammatory activity of EMD and TGF-β in a bioassay when IL-6 and CXCL2 expression was driven by the LPS stimulation of RAW 264.7 macrophages. This central observation was supported by showing that SB431542 reversed the anti-inflammatory activity of EMD using IL-1β and TNF-α-stimulated ST2 bone marrow stromal cells. Together, these findings implicate that the TGF-β activity mediates at least part of the anti-inflammatory activity of EMD in vitro.  相似文献   

7.
The preparation of platelet-rich fibrin (PRF) requires blood centrifugation to separate the yellow plasma from the red erythrocyte fraction. PRF membranes prepared from coagulated yellow plasma are then transferred to the defect sites to support tissue regeneration. During natural wound healing, however, it is the unfractionated blood clot (UBC) that fills the defect site. It is unclear whether centrifugation is necessary to prepare a blood-derived matrix that supports tissue regeneration. The aim of the present study was to compare lysates prepared from PRF and UBC based on bioassays and degradation of the respective membranes. We report here that lysates prepared from PRF and UBC membranes similarly activate TGF-β signaling, as indicated by the expression of interleukin 11 (IL-11), NADPH oxidase 4 (NOX-4) and proteoglycan 4 (PRG4) in gingival fibroblasts. Consistently, PRF and UBC lysates stimulated the phosphorylation and nuclear translocation of Smad3 in gingival fibroblasts. We further observed that PRF and UBC lysates have comparable anti-inflammatory activity, as shown by the reduction in lipopolysaccharide (LPS)-induced IL-6, inducible nitric oxidase synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in RAW264.7 cells. Moreover, inflammation induced by Poly (1:C) HMW and FSL-1, which are agonists of Toll-like receptor (TLR) 3 and 2/6, respectively, was reduced by both PRF and UBC. PRF and UBC lysates reduced the nuclear translocation of p65 in LPS-induced RAW264.7 cells. In contrast to the similar activity observed in the bioassays, UBC membranes lack the structural integrity of PRF membranes, as indicated by the rapid and spontaneous disintegration of UBC membranes. We show here that the lysates prepared from PRF and UBC possess robust TGF-β and anti-inflammatory activity. However, visual inspection of the PRF and UBC membranes confirmed the negative impact of erythrocytes on the structural integrity of membranes prepared from whole blood. The data from the present study suggest that although both UBC and PRF have potent TGF-β and anti-inflammatory activity, UBC does not have the strength properties required to be used clinically to prepare applicable membranes. Thus, centrifugation is necessary to generate durable and clinically applicable blood-derived membranes.  相似文献   

8.
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression.  相似文献   

9.
Transforming growth factor β (TGF-β) signalling pathways are highly conserved across metazoa and play essential roles not only during development but also in adult tissue maintenance. Alterations of these pathways usually result in a plethora of pathologies. In the nematode Caenorhabditis elegans, the TGF-β Sma/Mab (small/male abnormal) pathway regulates various worm phenotypes such as body size, immune response, ageing, matricide and reproductive span. SMA-10 has been described as a positive modulator of worm body size through the TGF-β Sma/Mab pathway. To better understand if SMA-10 is a core component of the pathway, we use gene epistatic analysis to assess the contribution of SMA-10 to various phenotypes regulated by TGF-β Sma/Mab. We confirm that SMA-10 controls body size and find that it also affects the matricide and reproductive span of the nematodes. However, neither male tail formation (previously reported) nor ageing appeared altered. Lastly, although null sma-10 worms are more susceptible to Pseudomonas aeruginosa infections than wild-types, this response does not depend on TGF-β Sma/Mab but on the insulin receptor DAF-2. We also show that the expression of sma-10 in either hypodermis or intestine fully rescues the wild-type immune response. Our results contribute to understanding the role of SMA-10 as a context-dependent component of TGF-β Sma/Mab, and reveal a function of SMA-10 in immunity in association to the Insulin/insulin-like growth factor signalling (IIS) pathway.  相似文献   

10.
11.
Cancers of the oral cavity can develop in the anatomic area extending from the lip, gum, tongue, mouth, and to the palate. Histologically, about 85–90% of oral cavity cancers are of the type squamous cells carcinomas (SCCs). The incidence of oral tongue SCC is higher in the tongue than any other anatomic area of the oral cavity. Here, we investigated the therapeutic effects and molecular mechanisms of docetaxel, which is a paclitaxel antitumor agent, on the cell growth of a human tongue SCC-derived SAS cell line. The results showed that docetaxel (10–300 nM) induced cytotoxicity and caspase-3 activity in SAS cells. Moreover, docetaxel (100 nM) promoted the expression of apoptosis-related signaling molecules, including the cleavages of caspase-3, caspase-7, and poly (ADP-ribose) polymerase (PARP). In mitochondria, docetaxel (100 nM) decreased the mitochondrial membrane potential (MMP) and Bcl-2 mRNA and protein expression and increased cytosolic cytochrome c protein expression and Bax mRNA and protein expression. In terms of mitogen-activated protein kinase (MAPK) and adenosine monophosphate-activated protein kinase (AMPK) signaling, docetaxel increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-c-Jun N-terminal kinase (JNK), and p-AMPKα protein expression but not p-p38 protein expression. Moreover, the increase in caspase-3/-7 activity and Bax protein expression and decreased Bcl-2 protein expression and MMP depolarization observed in docetaxel-treated SAS cells could be reversed by treatment with either SP600125 (a JNK inhibitor), PD98059 (an MEK1/2 (mitogen-activated protein kinase kinase 1/2) inhibitor), or compound c (an AMPK inhibitor). The docetaxel-induced increases in p-JNK, p-ERK, and p-AMPKα protein expression could also be reversed by treatment with either SP600125, PD98059, or compound c. These results indicate that docetaxel induces human tongue SCC cell apoptosis via interdependent MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways. Our results show that docetaxel could possibly exert a potent pharmacological effect on human oral tongue SCC cell growth.  相似文献   

12.
β-apopicropodophyllin (APP), a derivative of podophyllotoxin (PPT), has been identified as a potential anti-cancer drug. This study tested whether APP acts as an anti-cancer drug and can sensitize colorectal cancer (CRC) cells to radiation treatment. APP exerted an anti-cancer effect against the CRC cell lines HCT116, DLD-1, SW480, and COLO320DM, with IC50 values of 7.88 nM, 8.22 nM, 9.84 nM, and 7.757 nM, respectively, for the induction of DNA damage. Clonogenic and cell counting assays indicated that the combined treatment of APP and γ-ionizing radiation (IR) showed greater retardation of cell growth than either treatment alone, suggesting that APP sensitized CRC cells to IR. Annexin V–propidium iodide (PI) assays and immunoblot analysis showed that the combined treatment of APP and IR increased apoptosis in CRC cells compared with either APP or IR alone. Results obtained from the xenograft experiments also indicated that the combination of APP and IR enhanced apoptosis in the in vivo animal model. Apoptosis induction by the combined treatment of APP and IR resulted from reactive oxygen species (ROS). Inhibition of ROS by N-acetylcysteine (NAC) restored cell viability and decreased the induction of apoptosis by APP and IR in CRC cells. Taken together, these results indicate that a combined treatment of APP and IR might promote apoptosis by inducing ROS in CRC cells.  相似文献   

13.
Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-β)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-β-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (β-actin) (ACTB) mRNA between the lenses of TGF-β-overexpressing (TGF-βtg) mice and TGF-βtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-β-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-β. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-β-induced EMT in the lens.  相似文献   

14.
15.
Methylmercury (MeHg), a long-lasting organic pollutant, is known to induce cytotoxic effects in mammalian cells. Epidemiological studies have suggested that environmental exposure to MeHg is linked to the development of diabetes mellitus (DM). The exact molecular mechanism of MeHg-induced pancreatic β-cell cytotoxicity is still unclear. Here, we found that MeHg (1-4 μM) significantly decreased insulin secretion and cell viability in pancreatic β-cell-derived RIN-m5F cells. A concomitant elevation of mitochondrial-dependent apoptotic events was observed, including decreased mitochondrial membrane potential and increased proapoptotic (Bax, Bak, p53)/antiapoptotic (Bcl-2) mRNA ratio, cytochrome c release, annexin V-Cy3 binding, caspase-3 activity, and caspase-3/-7/-9 activation. Exposure of RIN-m5F cells to MeHg (2 μM) also induced protein expression of endoplasmic reticulum (ER) stress-related signaling molecules, including C/EBP homologous protein (CHOP), X-box binding protein (XBP-1), and caspase-12. Pretreatment with 4-phenylbutyric acid (4-PBA; an ER stress inhibitor) and specific siRNAs for CHOP and XBP-1 significantly inhibited their expression and caspase-3/-12 activation in MeHg-exposed RIN-mF cells. MeHg could also evoke c-Jun N-terminal kinase (JNK) activation and reactive oxygen species (ROS) generation. Antioxidant N-acetylcysteine (NAC; 1mM) or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox; 100 μM) markedly prevented MeH-induced ROS generation and decreased cell viability in RIN-m5F cells. Furthermore, pretreatment of cells with SP600125 (JNK inhibitor; 10 μM) or NAC (1 mM) or transfection with JNK-specific siRNA obviously attenuated the MeHg-induced JNK phosphorylation, CHOP and XBP-1 protein expression, apoptotic events, and insulin secretion dysfunction. NAC significantly inhibited MeHg-activated JNK signaling, but SP600125 could not effectively reduce MeHg-induced ROS generation. Collectively, these findings demonstrate that the induction of ROS-activated JNK signaling is a crucial mechanism underlying MeHg-induced mitochondria- and ER stress-dependent apoptosis, ultimately leading to β-cell death.  相似文献   

16.
The hypoxia associated with the transforming growth factor-β2 (TGF-β2)-induced epithelial mesenchymal transition (EMT) of human retinal pigment epithelium (HRPE) cells is well recognized as the essential underlying mechanism responsible for the development of proliferative retinal diseases. In vitro, three-dimensional (3D) models associated with spontaneous O2 gradients can be used to recapitulate the pathological levels of hypoxia to study the effect of hypoxia on the TGF-β2-induced EMT of HRPE cells in detail, we used two-dimensional-(2D) and 3D-cultured HRPE cells. TGF-β2 and hypoxia significantly and synergistically increased the barrier function of the 2D HRPE monolayers, as evidenced by TEER measurements, the downsizing and stiffening of the 3D HRPE spheroids and the mRNA expression of most of the ECM proteins. A real-time metabolic analysis indicated that TGF-β2 caused a decrease in the maximal capacity of mitochondrial oxidative phosphorylation in the 2D HRPE cells, whereas, in the case of 3D HRPE spheroids, TGF-β2 increased proton leakage. The findings reported herein indicate that the TGF-β2-induced EMT of both the 2D and 3D cultured HRPE cells were greatly modified by hypoxia, but during these EMT processes, the metabolic plasticity was different between 2D and 3D HRPE cells, suggesting that the mechanisms responsible for the EMT of the HRPE cells may be variable during their spatial spreading.  相似文献   

17.
Mutations in the Von Hippel–Lindau (VHL) gene are the driving force in many forms of clear cell renal cell carcinoma (ccRCC) and promote hypoxia-inducible factor (HIF)-dependent tumor proliferation, metastasis and angiogenesis. Despite the progress that has already been made, ccRCC generally remain resistant to conventional therapies and ccRCC patients suffer from metastasis and acquired resistance, highlighting the need for novel therapeutic options. Cysteinyl leukotriene receptor 1 (CysLTR1) antagonists, like zafirlukast, are administered in bronchial asthma to control eicosanoid signaling. Intriguingly, long-term use of zafirlukast decreases cancer risk and leukotriene receptor antagonists inhibit tumor growth, but the mechanisms still remain unexplored. Therefore, we aim to understand the mechanisms of zafirlukast-mediated cell death in ccRCC cells. We show that zafirlukast induces VHL-dependent and TNFα-independent non-apoptotic and non-necroptotic cell death in ccRCC cells. Cell death triggered by zafirlukast could be rescued with antioxidants and the PARP-1 inhibitor Olaparib, and additionally relies on HIF-2α. Finally, MG-132-mediated proteasome inhibition sensitized VHL wild-type cells to zafirlukast-induced cell death and inhibition of HIF-2α rescued zafirlukast- and MG-132-triggered cell death. Together, these results highlight the importance of VHL, HIF and proteasomal degradation in zafirlukast-induced oxidative cell death with potentially novel therapeutic implications for ccRCC.  相似文献   

18.
19.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.  相似文献   

20.
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号