首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 [[1alpha,2beta(R)5alpha]-(-)-5-(1,1-dimethylheptyl+ ++)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol], and the specific antagonist SR 141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H] dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 microM) and anandamide (10 microM) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 microM). CP 55940 (1 microM) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelied striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

2.
Wistar-Kyoto (WKY) rats display high emotivity (e.g. anxiety), compared to Wistar rats. The key role of serotonin (5-HT)1B/1D autoreceptors in 5-HT neurotransmission, and its consequences on emotivity, led us to measure the effects of the nonselective 5-HT1B/1D) receptor agonist m-trifluoromethyl-phenylpiperazine (TFMPP) on central tryptophan hydroxylase activity in male WKY and Wistar rats. In addition to strain-dependent differences in central 5-HT synthesis (WKY > Wistar), acute administration of TFMPP (1.5 and 3 mg/kg) decreased the amplitude of m-hydroxy-benzylhydrazine-elicited accumulation of hippocampal, striatal and cortical 5-hydroxytryptophan (5-HTP) in both strains. In midbrain, however, TFMPP decreased 5-HTP accumulation (but not tryptophan levels) in WKY rats only, whereas the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2 mg/kg) decreased midbrain 5-HTP levels to a similar extent in both strains. Pretreatment of WKY rats with the selective 5-HT1B/1D receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1, 2,4-oxadiozol-3-yl)-biphenyl-4-carboxamide (GR 127935, 1.5 and 3 mg/kg) slightly increased midbrain tryptophan hydroxylase activity but did not affect the negative effect of TFMPP on 5-HTP formation. Pretreatment with the 5-HT1A receptor antagonist (+)-N-tert-butyl-3-(4-[2-methoxyphenyl]piperazin-1-yl)-2-phenylpro panamide ((+)-WAY 100135; 3 mg/kg), which decreased the inhibitory effect of 8-OH-DPAT on midbrain 5-HTP levels by 50%, did not alter that of TFMPP. Lastly, neither reserpine (5 mg/kg), ketanserin (1 mg/kg) mianserin (2 mg/kg) nor idazoxan (1 mg/kg) pretreatments affected TFMPP-induced inhibition of midbrain 5-HTP formation, ruling out a role for monoamine release, 5-HT2 receptors and alpha2-adrenoceptors. Our data show that TFMPP, an agonist often used to stimulate 5-HT1B/1D receptors, may inhibit central 5-HT synthesis through nonserotonergic mechanisms.  相似文献   

3.
1. Presynaptic modulation of noradrenaline release in human atrial tissue specimens was investigated under normoxic and anoxic conditions. 2. Noradrenaline release was induced by electrical stimulation and release during experimental intervention (S2) was compared with release during a preceding control stimulation (S1). The results were expressed as the geometric means and 95% confidence intervals of the S2/S1 ratio. 3. The alpha 2-adrenoceptor agonist, UK 14304 (0.1 mumol-1) significantly inhibited noradrenaline release, resulting in a S2/S1 ratio of 0.49 (0.40-0.59), and the a 2-adrenoceptor antagonist, yohimbine (1 mumol l-1) increased noradrenaline release (S2/S1 1.83 [1.43-2.35]) during normoxia. Both compounds were ineffective during anoxia. 4. Adenosine (30 mumol-1) inhibited noradrenaline release with a S2/S1 ratio of 0.54 (0.42-0.66). The adenosine antagonist, 8-phenyltheophylline, alone had no effect during normoxia. During anoxia, neither adenosine nor 8-phenyltheophylline altered noradrenaline release. 5. The beta 2-adrenoceptor agonist, terbutaline (1 mumol l-1) increased (1.53 [1.14-2.01]) and the beta-adrenoceptor antagonist, pindolol (1 mumol l-1) suppressed noradrenaline release (0.62 [0.49-0.79]) under normoxic conditions. During anoxia, pindolol significantly inhibited noradrenaline release with a S2/S1 ratio of 0.66 (0.51-0.85), whereas terbutaline did not influence noradrenaline release. 6. Angiotensin II (0.1 mumol l-1 enhanced noradrenaline release resulting in a S2/S1 ratio of 1.44 (1.34-1.54), while the angiotensin II antagonist, losartan (1 mumol l-1) had no effect on noradrenaline release during normoxia. Conversely, angiotensin II did not increase noradrenaline release and losartan significantly inhibited noradrenaline release to a S2/S1 ratio of 0.60 (0.46-0.77) during anoxia. 7. In conclusion, human cardiac tissue possesses presynaptic inhibitory alpha 2-adrenoceptors and adenosine receptors, as well as facilitatory beta 2-adrenoceptors and angiotensin II receptors regulating noradrenaline release under normoxic conditions. During anoxia the responses to alpha 2-adrenoceptors and adenosine receptor stimulation are lost, whereas facilitatory responses to beta 2-adrenoceptors and adenosine II receptor stimulation are maintained and these receptors appear to be maximally stimulated. This differential presynaptic modulation in anoxia may contribute to enhanced sympathetic activity in ischaemia.  相似文献   

4.
The possibility of a P2-receptor-mediated modulation of the release of serotonin in the rat brain cortex was investigated in occipito-parietal slices preincubated with [3H]serotonin and then superfused and stimulated electrically (10 pulses, 1 Hz). Adenosine receptor agonists decreased the stimulation-evoked overflow of tritium at best slightly; the selective A1 agonist N6-cyclopentyl-adenosine caused no change. Several nucleotides had more marked effects: ATP (3-1000 microM), adenosine-5'-O-(3-thiotriphosphate) (3-300 microM) and P1,P5-di(adenosine-5')-pentaphosphate (3-300 microM) decreased the evoked overflow by up to ca 35%. AMP, alpha,beta-methylene-ATP and UTP produced smaller decreases and 2-methylthio-ATP and UMP caused no change. The inhibition by ATP was attenuated both by the P1-receptor antagonist 8-(p-sulphophenyl)-theophylline (100 microM) and by the P2-receptor antagonist suramin (300 microM) but was not changed by indomethacin (10 microM) and NG-nitro-L-arginine (10 microM). We conclude that the release of serotonin in the rat brain cortex is inhibited through presynaptic P1-receptors (which are not A1) as well as P2-receptors. Inhibition of release via P2-receptors has been previously shown for noradrenaline (brain cortex and hippocampus) and dopamine (neostriatum) and, hence, may be widespread. Differences between transmitter systems exist, however, in the degree of their sensitivity to presynaptic P2-receptor-mediated modulation.  相似文献   

5.
ATP (1 mM) inhibited, whereas 2-methylthio-ATP (30 microM), a P2Y-selective purinoceptor agonist, increased electrically evoked release of [3H]noradrenaline from chick sympathetic neurons. The P2X-selective purinoceptor agonist alpha,beta-methylene-ATP (30 microM) had no effect. The ATP-induced inhibition of release as well as the facilitation caused by 2-methylthio-ATP was not affected by the selective adenosine (P1) receptor antagonist 8-(p-sulfophenyl)-theophylline (8-PST; 100 microM), but completely prevented by the non-selective P2 antagonist suramin (300 microM). The present data reveal a dual regulation of noradrenaline release from sympathetic neurons. Facilitation seems to be mediated by a P2Y purinoceptor, whereas inhibition is caused by a P2 purinoceptor which needs further subtype characterization.  相似文献   

6.
8-epi-prostaglandin F2 alpha stimulated contraction of human myometrial strips obtained from five different donors at the time of hysterectomy with a pEC50 value of 6.3 +/- 0.5. In paired strips from the same donors the pEC50 value for the selective TP receptor agonist U46619 ([1R-[1a,4a,5b(Z),6a(1E,3S*)]]-7-[6-(3- hydroxy-1-octenyl)-2-oxabicyclo[2.2.1]hept-5-yl]-5-heptenoic acid) was 8.3 +/- 0.4. In strips from four other donors 8-epi-prostaglandin F2 alpha was ineffective whereas the pEC50 for U46619 was 6.9 +/- 0.3. Responses to 8-epi-prostaglandin F2 alpha were unaffected by the selective DP receptor antagonist BW A868C (3-benzyl-5-(6-carboxyhexyl)-1-(2- cyclohexyl-2-hydroxyethylamino)hydantoin) at 50 nM but were blocked by the selective TP receptor antagonist L670596 ((-)6,8-difluoro-9-p-methylsulfonyl benzyl-1,2,3,4- tetrahydrocarbazol-1-yl-acetic acid) at 50 nM. The pIC50 values obtained when the TP receptor antagonists GR 32191 ([1R- [1 alpha(Z),2 beta,3 beta,5 alpha]]-(+)-7-[5-[[(1,1'-biphenyl)-4- yl]methoxy]-3-hydroxy-2-(1-piperidinyl)cyclopentyl]-4-heptenoic acid), ICI D1542 ((4(Z)-6-[(2S,4S,5R)-2-[1-methyl-1-(2-nitro-4-tolyloxy)ethyl]- 4-(3-pyridyl)-1,3-dioxan-5-yl]hex-4-enoic acid), ICI 192605 (4(Z)-6-[(2,4,5-cis)-2-(2-chlorophenyl)-4-(2-hydroxyphenyl)-1,3- dioxan-5-yl]hexenoic acid), L670596 and SQ 29548 ([1S-(1 alpha,2 beta(5Z),3 beta,4 alpha]]-7- [3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-7- oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) were added cumulatively to strips pre-contracted with an EC80 concentration of 8-epi-prostaglandin F2 alpha were not significantly different from those obtained when an EC80 concentration of U46619 was used. The effects of 8-epi-prostaglandin F2 alpha on strips pre-contracted with an EC80 concentration of U46619 were not different from those of U46619 itself. It is concluded that in the non-pregnant human myometrium 8-epi-prostaglandin F2 alpha is a medium potency contractile agonist acting predominantly at the TP receptor.  相似文献   

7.
It has been hypothesized that a deficit in serotonin may be a crucial determinant in the pathophysiology of major depression. Serotonin-1A receptors are located on serotonin cell bodies in the midbrain dorsal raphe (DR) nucleus, and the activation of these receptors inhibits the firing of serotonin neurons and diminishes the release of this neurotransmitter in the prefrontal cortex. Repeated treatment with some antidepressant medications desensitizes serotonin-1A receptors in the rat midbrain. The present study determined whether the binding of [3H]8-hydroxy-2-(di-n-propyl)aminotetralin (8-OH-DPAT), an agonist at serotonin-1A receptors, is altered in the midbrain of suicide victims with major depression. Radiolabeling of the serotonin-1A receptor in the DR varied significantly along the rostral-to-caudal extent of the human midbrain. The binding of [3H]8-OH-DPAT to serotonin-1A receptors was increased significantly in the midbrain DR of suicide victims with major depression as compared with psychiatrically normal control subjects. In suicide victims with major depression, the increase in the binding of [3H]8-OH-DPAT to serotonin-1A receptors was detected in the entire DR and specifically localized to the dorsal and ventrolateral subnuclei. Enhanced radioligand binding of an agonist to inhibitory serotonin-1A autoreceptors in the human DR provides pharmacological evidence to support the hypothesis of diminished activity of serotonin neurons in suicide victims with major depression.  相似文献   

8.
The dopamine (DA) D3 receptor antagonist PD 58491 [3-[4-[1-[4-[2-[4-(3-diethylaminopropoxy)phenyl]benzoimidazol++ +-1-yl-butyl]-1H-benzoimidazol-2-yl]phenoxy]propyl]diethylamine] bound with high affinity and selectivity to recombinant human DA D3 versus D2L and D4.2 receptors transfected into Chinese hamster ovary cells: Ki values of 19.5 nM versus 2,362 and >3,000 nM, respectively. In contrast, the putative DA D3 receptor antagonist (+)-AJ76 displayed low affinity and selectivity for D3 versus D2L and D4.2 receptors (91 nM vs. 253 and 193 nM, respectively). In vitro, PD 58491 (1 nM-1 microM) exhibited D3 receptor antagonist activity, reversing the quinpirole (10 nM)-induced stimulation of [3H]thymidine uptake in D3 CHOpro-5 cells, but did not have any significant intrinsic activity by itself in this assay. PD 58491 did not decrease the gamma-butyrolactone-induced increase in DA synthesis (L-3,4-dihydroxyphenylalanine accumulation) in rat striatum, indicating that the compound possessed no in vivo DA D2/D3 receptor agonist action at DA autoreceptors. PD 58491 (3-30 mg/kg, i.p.) generally did not alter DA or serotonin synthesis in either the striatum or mesolimbic region of rat brain. The D3-preferring agonist PD 128907 decreased DA synthesis in striatum and mesolimbic regions, and this effect was attenuated by pretreatment with PD 58491. These findings support the hypothesis that DA D3 autoreceptors may in part modulate the synthesis and release of DA in striatum and mesolimbic regions.  相似文献   

9.
So far, no clear correlation has been found between the effects of dopamine D1 receptor agonists on motor behavior in primate models of Parkinson's disease and their ability to stimulate adenylate cyclase in rats, the benzazepine SKF 83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-]H- 3-benzazepine) being the most striking example. Since this discrepancy might be attributed to: (A) the different species used to study these effects or (B) the interaction of SKF 83959 with other catecholamine receptors, the aims of this study were: (1) to study the ability of SKF 83959 to stimulate adenylate cyclase in cultured human and monkey glial cells equipped with dopamine D1 receptors and (2) to evaluate the affinity for and the functional interaction of SKF 83959 with other catecholamine receptors. Binding studies revealed that SKF 83959 displayed the highest affinity for the dopamine D1 receptor (pKi=6.72) and the alpha2-adrenoceptor (pKi=6.41) and moderate affinity for the dopamine D2 receptor and the noradrenaline transporter. In monkey and human cells, SKF 83959 did not stimulate cyclic adenosine monophosphate (cAMP) formation to a significant extent, but antagonized very potently the dopamine-induced stimulation of cAMP formation in both cell types. The compound stimulated basal dopamine outflow and inhibited depolarization-induced acetylcholine release only at concentrations > 10 microM. Finally, SKF 83959 concentration dependently increased electrically evoked noradrenaline release, indicating that it had alpha2-adrenoceptor blocking activity and interfered with the noradrenaline transporter. In conclusion, SKF 83959 is a potent dopamine D1 receptor and alpha2-adrenoceptor antagonist. Thus, the anti-parkinsonian effects of SKF 83959 in primates are not mediated by striatal dopamine D1 receptors coupled to adenylate cyclase in a stimulatory way.  相似文献   

10.
A series of new 1-aryl-4-alkylpiperazines containing a terminal benzamide fragment or a tetralin-1-yl nucleus on the alkyl chain were synthesized and tested for binding at cloned human dopamine D4 and D2 receptor subtypes. A SAFIR (structure-affinity relationship) study on this series is herein discussed. The most relevant D4 receptor affinities were displayed by N-[omega-[4-arylpiperazin-1-yl]alkyl]-methoxybenzamides (compounds 5, 16-20), their IC50 values ranging between 0.057 and 7.8 nM. Among these, N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (17) emerged since it exhibited very high affinity for dopamine D4 receptor (IC50 = 0.057 nM) with selectivity of >10 000 for the D4 versus the D2 receptor; compound 17 was also selective versus serotonin 5-HT1A and adrenergic alpha1 receptors.  相似文献   

11.
The release of endogenous ATP, measured by the luciferin-luciferase assay, and of [3H]noradrenaline from the in vitro superfused rat hypothalamic slices were studied. ATP and [3H]noradrenaline were released simultaneously during resting conditions and in response to low and high frequency field electrical stimulation; the release of both substances were frequency dependent between 2 Hz and 16 Hz. The stimulation-induced release of ATP and [3H]noradrenaline was diminished by more than 80% under Ca2+-free conditions. Tetrodotoxin inhibited the majority of the evoked release of both ATP and [3H]noradrenaline, however, it was less effective in reducing the release of [3H]noradrenaline, than that of ATP. Bilateral stereotaxic injection of 6-hydroxydopamine (4 microg/side) to the ventral part of the ventral noradrenergic bundle, originating from the A1 cell group in the brainstem, resulted in a 55% reduction of endogenous noradrenaline content of the hypothalamic slices, and the tritium uptake and the stimulation-evoked release of [3H]noradrenaline was also markedly reduced. While the basal release of ATP was not affected, the evoked release was diminished by 72% by this treatment. Perfusion of the slices with noradrenaline (100 microM) initiated rapid and continuous tritium release; on the other hand, it did not release any ATP. In contrast, 6 min perfusion of (-)nicotine and 1,1-dimethyl-4-phenyl-piperazinium iodide evoked parallel release of ATP and [3H]noradrenaline which was inhibited by the nicotinic receptor antagonist mecamylamine; 6-hydroxydopamine lesion of the ventral part of the ventral noradrenergic bundle did not affect the nicotine-evoked ATP and [3H]noradrenaline release. While CH 38083, a non subtype-selective alpha2-antagonist and BRL44408, the subtype-selective alpha2AD antagonist augmented the evoked release of [3H]noradrenaline, ARC239, a selective alpha2BC antagonist was without effect. In contrast, neither of the alpha2-antagonists significantly affected the evoked-release of ATP. In summary, we report here that endogenous ATP and [3H]noradrenaline are co-released stimulation-dependently from superfused rat hypothalamic slices. A significant part of the release of both compounds is derived from the nerve terminals, originating from the A1 catecholaminergic cell group of brainstem nuclei. Unlike that from the peripheral sympathetic transmission, noradrenaline and alpha1-adrenoceptor agonists were unable to promote the release of ATP. Conversely, parallel ATP and noradrenaline release could be induced by nicotine receptor activation, but this release does not originate from the same nerve endings. The evoked-release of [3H]noradrenaline is inhibited by endogenous noradrenaline via alpha2AD subtype of adrenoreceptors, while the release of ATP is not subject to this autoinhibitory modulation. In conclusion, our results support the view that ATP is involved in the neurotransmission in the hypothalamus, but the sources of the released ATP and noradrenaline seem to be not identical under different stimulatory and modulatory conditions.  相似文献   

12.
The mechanism of prostaglandin E2-, prostaglandin F2alpha- and latanoprost acid (13,14-dihydro-17-phenyl-18,19,20-trinor-prostaglandin F2alpha)-induced relaxation of the rabbit submental vein was studied. Prostaglandin E2 caused maximum relaxation of endothelin-1 precontracted vessels (EC50: 1.8 x 10(-8) M). Much of the relaxation could be abolished by denuding the endothelium with the nitric oxide synthase inhibitor, L-NAME (N(G)-Nitro-L-arginine methylester). CGRP-(8-37) (calcitonin gene-related peptide fragment (8-37)), a calcitonin gene-related peptide receptor antagonist, exhibited a partial blocking effect, whereas the tachykinin NK1 receptor blocker, GR 82334 ([D-Pro9[Spiro-gamma-Lactam]Leu10,Trp11]physalaemin (1-11)), markedly attenuated the response. Both prostaglandin F2alpha and the relatively selective FP receptor agonist, latanoprost acid, caused relaxation of the veins to about 50% of the precontracted state in the presence of GR 32191B ([1R-[1alpha(Z),2beta,3beta,5alpha]]-(+)-7-[5-([1,1'-b iphenyl]-4-ylmethoxy)-3-hydroxy-2-(1-piperidinyl)cyclopentyl]-4-he ptenoic acid), a thromboxane receptor antagonist (EC50: for prostaglandin F2alpha 7.9 x 10(-9) M, and for latanoprost acid 4.9 x 10(-9) M). L-NAME, as well as denuding the endothelium, completely abolished the effect. In addition, most or at least a large part of the relaxation was also blocked by CGRP-(8-37) as well as GR 82334. These results indicate that the FP receptor-mediated relaxation of veins is based on release of nitric oxide in addition to involvement of calcitonin gene-related peptide and substance P, or some other tachykinin, probably released from perivascular sensory nerves. The more pronounced relaxation induced by prostaglandin E2 could be due to vasodilator EP receptors in the smooth muscle layer of the veins.  相似文献   

13.
The receptor binding and biochemical effects of the putative dopamine (DA) partial agonist CI-1007 ([R(+)-1,2,3,6-tetrahydro-4-phenyl- 1-[(3-phenyl-3-cyclohexen-1-yl)methyl]pyridine] maleate) and potential antipsychotic were evaluated with a variety of biochemical methods. In receptor binding studies, CI-1007 bound to rat striatal DA receptors exhibiting a Ki of 3 nM as assessed by inhibition of [3H]N-propylnorapomorphine binding. CI-1007 also exhibited high affinity for cloned human D2L (Ki = 25.5 nM) and D3 (Ki = 16.6 nM) receptors with less affinity for D4.2 receptors (Ki = 90.9 nM). The affinity for serotonin-1A (5-HT-1A), alpha-2 adrenergic and 5-HT-2 receptors was moderate (submicromolar range) and slight or negligible for alpha-1, DA D1 and various other receptors. Unlike dopamine, the inhibition of [3H]spiperone binding was monophasic for CI-1007 and only slightly affected by the addition of Gpp-(NH)p. In vitro CI-1007 antagonized the forskolin-induced increases in cyclic AMP levels in GH4C1 cells expressing the human D2L receptor, having an intrinsic activity of 53% of that seen with the full agonist quinpirole. In vivo CI-1007 antagonized the gamma-butyrolactone (GBL)-induced accumulation of L-3,4-dihydroxyphenylalanine in striatum and mesolimbic regions of rat brain, causing a maximal 64% reversal in striatum, consistent with a partial agonist profile. In microdialysis studies it decreased DA overflow in both striatum and nucleus accumbens, indicating decreased release of DA. CI-1007 also reduced brain DA synthesis (DOPA accumulation), metabolism (DOPAC and HVA) and utilization (after tyrosine hydroxylase inhibition with alpha-methyl-p-tyrosine). CI-1007 did not affect striatal acetylcholine levels indicating lack of potent postsynaptic DA actions. CI-1007 seemed to be selective for DA neurons as it did not alter rat brain norepinephrine (NE) synthesis in the NE-enriched brainstem or NE utilization in the mesolimbic region. In addition, it did not affect in general 5-HT synthesis and metabolism in striatum and mesolimbic regions. These neurochemical results demonstrate that CI-1007 is a selective potent brain dopamine partial agonist with limited agonist activity at postsynaptic DA receptors.  相似文献   

14.
In the present study the effect of the opioid heptadecapeptide nociceptin, also termed orphanin FQ, an endogenous ligand for the orphan receptor named ORL1 (opioid receptor-like 1) receptor, was investigated on [3H]noradrenaline release induced by electrical field stimulation (24 pulses at 0.4 Hz, 200 mA, 0.3 ms duration) in the rat tail artery in the absence and presence of an alpha2-adrenoceptor antagonist, rauwolscine 3 microM. Nociceptin inhibited the electrically-evoked tritiated noradrenaline release in a concentration-dependent manner from rat tail arteries. This inhibitory effect of nociceptin was enhanced in the presence of the alpha2-adrenoceptor antagonist rauwolscine (maximum inhibition by 25% and 50% in the absence and presence of rauwolscine, respectively). At a supramaximal concentration (10 microM), the inhibitory action of DAGO, a selective micro-opioid receptor agonist, was less pronounced than that of nociceptin. The inhibitory effect of nociceptin was counteracted by naloxone benzoylhydrazone (3 microM) which by itself did not change the stimulation-evoked noradrenaline overflow. Naloxone (10 microM), a non-selective opioid receptor antagonist, did not affect the inhibitory effect of nociceptin whereas it abolished that of DAGO. In conclusion, these results suggest that nociceptin modulates noradrenergic neurotransmission by acting on prejunctional ORL1 receptors located on nerve terminals innervating the rat tail artery. They also demonstrate that prejunctional ORL1 receptors interact with prejunctional alpha2-adrenoceptors. The physiological significance of this phenomenon remains to be determined.  相似文献   

15.
An in vitro perifusion system was developed for bovine hypothalamic tissue to examine the role of alpha 2-adrenergic receptors in the regulation of growth hormone-releasing hormone (GHRH) and somatostatin (SRIF) release. Up to three sagittal slices (600 microns) of hypothalamus, immediately parallel to the midline, were cut in an oxygenated balanced salt solution at 4 degrees C, placed in 5 cc syringes, and perifused at 37 degrees C with oxygenated minimum essential medium-alpha at a flow rate of 0.15 ml/min. Three experiments were conducted, and medium effluent was collected every 20 min before (two samples), during (one or three samples), and after (six samples) treatment. Areas under GHRH and SRIF response curves (AUC), adjusted by covariance for pretreatment values, were calculated from samples collected during the treatment/post-treatment period. Location from which slices were cut, relative to the sagittal midline, had no effect on basal release of GHRH and SRIF, but variation in basal release of GHRH and SRIF differed among animals. Medium containing 60 mM KCI increased AUC for GHRH 39% and 161% for SRIF when compared with perifusion of medium alone, thereby verifying that tissue remained viable for at least 14 hr. Activation of alpha 2-adrenergic receptor with 10(-6) and 10(-4) M clonidine increased AUC for GHRH from 54.8 (control) to 79.1 and 108.7 +/- 2.5 ng.ml-1 min for 10(-6) M and 10(-4) M clonidine, respectively. Guanabenz, another alpha 2-adrenergic receptor agonist, at 10(-8), 10(-6), and 10(-4) M also increased GHRH release from 45.5 (control) to 52.8, 66.2, and 86.7 +/- 1.6 ng.ml-1 min, respectively. Clonidine and guanabenz did not affect release of SRIF. An alpha 2-adrenergic receptor antagonist, idazoxan, blocked clonidine-induced release of GHRH without affecting release of SRIF. We concluded that alpha 2-adrenergic receptor stimulation of in vivo growth hormone secretion in cattle is mediated via an increase in release of GHRH and not a change in release of SRIF.  相似文献   

16.
The functional regulation by serotonin (5-HT) receptors of the 5-HT-enhanced dopamine (DA) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. Exogenously administered or extracellularly enhanced 5-HT (by means of intranigral citalopram perfusion) (both 1 microM for 1 h) significantly increased nigral DA efflux to 165% and 145%, respectively. Intranigral administration of pindolol (10 microM, 3 h), a 5-HT1A/1B receptor antagonist which is clinically used in order to block 5-HT1A/1B autoreceptors, did not affect DA levels but significantly increased nigral 5-HT levels to 135%. Co-perfusion of this antagonist with 5-HT (1 microM, 1 h) did not abolish the 5-HT-induced DA release from the SN as DA was increased to 166%. Local application of the 5-HT1A/1B receptor agonist, CP 93129 (1 microM, 1 h), increased DA release from the SN to 4770% whereas 5-HT release was significantly decreased to 75%. Co-perfusion of the 5-HT1A/1B receptor antagonist, pindolol, with this agonist only partly abolished the CP 93129-induced DA release whereas the CP 93129-induced decrease in nigral 5-HT release was completely abolished. Administration of the 5-HT2A/2C receptor antagonist, ketanserin (50 microM, 3 h), significantly increased DA to 143% and 5-HT release to 363%. Co-perfusion of this antagonist with 5-HT still caused an increase in nigral DA release to 214%. Intranigral perfusion of the 5-HT4 receptor antagonist, RS 39604 (10 microM, 3 h), did not affect DA levels but significantly decreased nigral 5-HT levels to 74%. Co-perfusion of this antagonist with 5-HT was able to prevent the 5-HT-enhanced DA efflux from the SN. From this study it can be concluded that the 5-HT-enhanced (and possibly the citalopram-induced) nigral DA release is 5-HT4 receptor mediated.  相似文献   

17.
The calcium antagonistic and alpha 1-adrenergic receptor blocking activities of monatepil maleate (CAS 103377-41-9, (+/-)-N-(6,11-dihydrodibenzo [b, e] thiepin-11-yl) -4-(4-fluorophenyl)-1-piperazinebutanamide monomaleate, AJ-2615), a novel calcium antagonist, its metabolites and their enantiomers were studied in vitro. Monatepil maleate inhibited calcium-induced contractions of rat thoracic aorta (pA2 = 8.71) and l-phenylephrine-induced contractions of rabbit superior mesenteric artery (IC50 = 56.6 nmol/l). The calcium antagonistic activities of the metabolites of monatepil maleate (AJ-2615-sulfoxide A, AJ-2615-sulfoxide B and AJ-2615-sulfone) were 1/10 of that of monatepil maleate. However, their alpha 1-adrenergic receptor blocking activities were similar to or slightly more potent than that of monatepil maleate. The potencies of the calcium antagonistic activities of monatepil maleate and its enantiomers [(S)-AJ-2615 and (R)-AJ-2615] were in the order of (S)-AJ-2615 > monatepil maleate > (R)-AJ-2615 whereas no difference was observed among them in alpha 1-adrenergic receptor blocking activity. In calcium antagonistic and alpha 1-adrenergic receptor blocking activities, there was no difference between the enantiomers of monatepil maleate metabolites. In conclusion, there was a difference with several times in calcium antagonistic activity between the two enantiomers of monatepil maleate but not in their alpha 1-adrenergic receptor blocking activity.  相似文献   

18.
The genetically dystonic (dtsz) hamster is an autosomal recessive mutant that shares several features with paroxysmal dystonia, i.e., a subcategory of inherited idiopathic dystonia in humans. Because the serotonin (5-HT) system has been suggested to be involved in dystonia, we examined the functional responsiveness of the 5-HT system in dystonic hamsters by administering various 5-HT agonists and antagonists selective for different receptor subtypes and observing the effects on dystonic attacks as well as the behavioural responses associated with drug administration. Paradoxically, marked prodystonic effects (i.e., increased severity and/or decreased latency of dystonic attacks) were seen with both the selective 5-HT1A receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and the selective and "silent" 5-HT1A receptor antagonist, N-tert-butyl-3[4-(2-methoxyphenyl)piperazin-1-yl]-2- phenylpropionamide [(+)-WAY-100135], whereas other 5-HT1A receptor antagonists, i.e., methyl 4[4-(4-[1,1,3-trioxo-2H-1,2-benzoiosothiazol-2-yl]butyl)-1- piperazinyl]1-H-indole-2-carboxylate (SDZ 216-525) and N1-bromoacetyl-N8-3'-(4-indolyloxy)-2'-hydroxypropyl-(Z)-1,8- diamino-p-methane (pindobind-5-HT1A) did not alter dystonia to any comparable extent. Because among these 5-HT1A receptor antagonists, (+)-WAY-100135 is the only drug known to be not only silent at postsynaptic but also presynaptic (somatodendritic) 5-HT1A receptors, the marked prodystonic effect of this drug could relate to increased 5-HT release as a result of the blockade of somatodendritic 5-HT1A receptors. The only 5-HT1A receptor antagonist that exerted antidystonic effects in hamsters was pindolol, which, however, could be related to its beta-adrenoceptor blocking action. The 5-HT1A receptor partial agonist ipsapirone exerted moderate prodystonic activity. Prodystonic activity was also determined for the mixed 5-HT1A/5-HT2 receptor agonist 5-methoxy-N,N-dimethyltryptamine, although this drug was less potent in this regard than 8-OH-DPAT. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) exerted prodystonic effects in mutant hamsters, which, however, were also seen after the administration of the 5-HT2 receptor antagonist ritanserin. Collectively, the results of this study demonstrate that dystonia in genetically dystonic hamsters can be affected by pharmacologic manipulation of 5-HT receptors. The data may also indicate that dystonia is not a potential clinical application for selective 5-HT1A or 5-HT2 receptor antagonists.  相似文献   

19.
Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine] has been evaluated as a muscarinic receptor agonist. In vitro, xanomeline had high affinity for muscarinic receptors in brain homogenates, but had substantially less or no affinity for a number of other neurotransmitter receptors and uptake sites. In cells stably expressing genetic m1 receptors, xanomeline increased phospholipid hydrolysis in CHO, BHK and A9 L cells to 100, 72 and 55% of the nonselective agonist carbachol. In isolated tissues, xanomeline had high affinity for M1 receptors in the rabbit vas deferens (IC50 = 0.006 nM), low affinity for M2 receptors in guinea pig atria (EC50 = 3 microM), was a weak partial agonist in guinea pig ileum and was neither an agonist nor antagonist in guinea pig bladder. In vivo, xanomeline increased striatal levels of dopamine metabolites, presumably by acting at M1 heteroreceptors on dopamine neurons to increase dopamine release. In contrast, xanomeline had only a relatively small effect on acetylcholine levels in brain, indicating that it is devoid of actions at muscarinic autoreceptors. In the gastrointestinal tract, xanomeline inhibited small intestinal and colonic motility, but increased small intestinal transmural potential difference. In contrast to the nonselective muscarinic agonist oxotremorine, xanomeline did not produce salivation, tremor nor hypothermia; it did, however, increase heart rate. The present data are consistent with the interpretation that xanomeline is a novel muscarinic receptor agonist with functional selectivity for M1 muscarinic receptors both in vitro and in vivo.  相似文献   

20.
The actions of several serotonergic ligands in use or under development for the treatment of migraine headaches were examined at recombinant human 5-HT1A receptors stably expressed in Chinese Hamster Ovary cells. Affinities (K(i)s) at this site were determined in competition binding experiments with [3H]-8-OH-DPAT ([3H](+/-)8-hydroxy-N,N-dipropylaminotetralin), whilst agonist efficacy was measured by stimulation of [35S]-GTP gamma S (guanylyl-5'-[gamma[35S]thio]-triphosphate) binding. Of the prophylactic antimigraine drugs tested, methysergide and lisuride behaved as efficacious agonists (Emax > or = 90% relative to 5-HT) whereas pitozifen and (-)propranolol acted as a partial agonist (60%) and an antagonist, respectively. This suggests that there is no correlation between agonism at 5-HT1A receptors and prophylactic antimigraine action. In contrast, serotonin, dihydroergotamine, sumatriptan, naratriptan and alniditan, which are effective in acute interruption of migraine attacks, each displayed high efficacy (Emax = 100, 100, 92.6, 79.3, 79.1% respectively) and marked affinity (Ki = 18.7, 0.6, 127, 26.4 and 3.0 nM respectively) at 5-HT1A receptors. EC50 values for agonist stimulation of [35S]-GTP gamma S binding correlated with respective Ki values at 5-HT1A receptors (r = 0.93) and the stimulation of [35S]-GTP gamma S binding by these compounds was antagonised by the selective 5-HT1A antagonist WAY 100,635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl) cyclo-hexanecarboxamide; 100 nM). These data suggest that agonism at 5-HT1A receptors may be involved in some actions of drugs used in acute antimigraine therapy. In comparison with the above compounds, novel ligands targeted at 5-HT1B/1D receptors, such as GR125,743 (N-[4-methoxy-3-(4-methyl-piperazin-1-yl)phenyl] -3-methyl-4-(4-pyridyl)benzamide) and GR 127,935 (N-[4-methoxy-3-(4-methylpiperazin-1-yl)-phenyl]-2'-methyl-4'-(5-m ethyl-1, 2,4-oxadiazol-3-yl)-biphenyl-4-carboxamide), only weakly activated [35S]-GTP gamma S binding (32.4 and 32.1% efficacy) and displayed moderate affinity at 5-HT1A receptors (Kis 53.1 and 49.8 nM) suggesting that they constitute useful tools to differentiate 5-HT1A and 5-HT1B/1D receptor-mediated actions. In conclusion, the present data indicates that several antimigraine agents exhibit marked 5-HT1A receptor activity and that although this is unlikely to be important for prophylactic action it may be relevant to the ancilliary properties of drugs used for acute migraine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号