首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用原位化学气相沉积、短时球磨和填加造孔剂法相结合的工艺制备了碳纳米管(CNTs)/Al复合泡沫,研究了其在压缩-压缩循环载荷下的力学性能及失效机制。结果表明,CNTs/Al复合泡沫的应变-循环次数曲线经历线弹性、应变硬化及应变快速增长三个阶段。不同于泡沫铝的逐层坍塌变形失效模式,CNTs/Al复合泡沫疲劳失效的主要原因是大量剪切变形带的形成,试样出现快速的塑性变形。此外,CNTs含量为2.5wt%、孔隙率为60%的复合泡沫试样的疲劳强度相比于泡沫铝提高了92%。CNTs的均匀分布及增强相与基体材料之间良好的界面结合性保证了疲劳载荷能够以剪切力的形式从基体传递到CNTs上,使其充分发挥自身高强度、高韧性的特点,进而提高了疲劳性能。   相似文献   

2.
喷丸强化对材料旋转弯曲疲劳强度影响的定量研究   总被引:1,自引:0,他引:1  
以往的工作已经提出了金属表面及内部疲劳极限的新概念,成功地分析了喷丸对三点弯曲(应力比R=0.05)条件下材料疲劳强度的影响。本文采用300M钢研究了喷丸强化对旋转弯曲疲劳强度的影响。结果表明,经适当表面强化后,疲劳裂纹萌生于试样的次表层,萌生疲劳裂纹的;陆界应力(称内部疲劳极限)为未经喷丸强化试样疲劳极限(称表面疲劳极限)的1.39倍,表明内部疲劳极限理论在旋转弯曲条件下仍然有效。  相似文献   

3.
目的 研究在准静态压缩过程中,不同孔径(泡沫铝内部胞孔的直径)对球体开孔泡沫铝压缩性能及吸能性能的影响。方法 针对3种不同孔径的泡沫铝试样进行准静态压缩实验。通过准静态压缩试验得出泡沫铝的应力-应变曲线,并通过应力-应变曲线计算得到吸能-应变曲线。结果 当泡沫铝孔径从5 mm增加到9 mm时,球形孔开孔泡沫铝的屈服强度增加了4.6862 MPa,最大吸能效率由24.45%提升到27.71%,力学性能和吸能性能均得到提升。结论 泡沫铝的压缩性能和吸能性能随着球体开孔泡沫铝孔径的增加而增强。  相似文献   

4.
为了研究闭孔泡沫铝动态压缩性能的应变率效应,采用改进的INSTRON高速动力加载系统,对不同应变率下闭孔泡沫铝试件进行动态压缩试验研究。首先利用正向试验和反向试验技术对不同厚度的闭孔泡沫铝试件在同一加载速率下的动态压缩性能进行了研究,得到了在一定速率下消除泡沫铝动态压缩试验中惯性效应的合理试件厚度。进一步开展了闭孔泡沫铝试件在不同加载速率下的高速压缩试验,研究了其动态压缩性能随应变率的变化规律。结果表明在高速压缩下,闭孔泡沫铝的应力-应变曲线与准静态条件相同,具有明显的弹性段、平台段及压实段的3阶段特征。闭孔泡沫铝的平台应力具有明显的应变率效应,而致密应变在不同的应变率下表现出了不同的变化趋势,初步解释为泡沫铝孔壁塑性变形机制的改变以及波动效应的相互影响。闭孔泡沫铝的吸能能力随应变率的增加而明显提升。  相似文献   

5.
高比强高孔隙率泡沫铝合金三明治梁   总被引:2,自引:0,他引:2  
研究了高比强泡沫铝合金和泡沫纯铝的单向压缩和剪切性能,对以高比强泡沫铝合金为夹芯的三明治梁失效模式的尺寸范围和承载能力进行了理论计算,结果与实验结果符合得很好.给出了泡沫铝合金三明治梁的设计方法,表明在较小的设计载荷下,三明治梁是以刚度作为设计的控制条件;在较大的设计载荷下,以相对强度为设计的控制条件.泡沫铝合金三明治梁与泡沫纯铝三明治梁的对比表明,在刚度设计控制条件下,前者的刚度是后者的1.00~1.185倍.在强度设计控制条件下,剪切破坏和压凹破坏失效模式下的泡沫铝合金三明治梁比泡沫纯铝三明治梁的极限强度分别提高57%~180%和90%~220%.  相似文献   

6.
中等应变率下泡沫铝的吸能特性   总被引:3,自引:0,他引:3  
进行了不同密度、高度和压缩方向下泡沫铝的准静态压缩试验和中等应变率下(<100 s-1)的冲击试验,研究了具有不同密度的闭孔泡沫铝在准静态压缩和冲击工况下的吸能特性.结果表明,泡沫铝是一种近似的各向同性结构,具有较高的单位质量吸能特性,是一种较好的吸能材料.在准静态和中等应变率冲击条件下,泡沫铝对应变率不敏感,其应力应变关系与应变率关系不大.不同的泡沫铝,其平台应力与密度之间的关系不同,在研究其性能时,必须测量应力-应变关系.泡沫铝的致密区对其吸能特性有很大的影响.  相似文献   

7.
开孔与闭孔泡沫铝的压缩力学行为   总被引:8,自引:0,他引:8  
康颖安  张俊彦 《材料导报》2005,19(8):122-124
研究了开孔与闭孔两种胞孔结构不同、制备工艺不同的泡沫铝在准静态压缩载荷下的压缩响应曲线.结果表明:开孔与闭孔泡沫铝压缩应力-应变曲线均具有多孔泡沫材料明显的三阶段特征,即线弹性段、塑性屈服平台段及致密段;相对密度对泡沫材料的力学性能(如杨氏模量、屈服强度)有很大影响;在准静态下,开孔泡沫铝表现出明显的应变率效应,而闭孔泡沫不如开孔敏感;泡沫铝材料表现为弱的各向异性;胞孔结构影响两种泡沫材料的压缩响应曲线.  相似文献   

8.
王宇  胡正飞  姚骋  张振  许婷 《复合材料学报》2018,35(6):1652-1660
采用超声辅助液态扩散焊接的方法制备冶金复合泡沫铝夹芯板,利用光学显微镜(OM)和SEM观察冶金复合样品的界面组织和结构,发现连接界面发生了侵蚀作用,接头均匀连续;EDS线扫结果表明,连接界面处焊接合金(Zn-10Al)和铝基体间的元素扩散现象明显,表明在超声作用下,基体材料表面氧化膜被破坏,枝晶在界面附着生长,形成良好的冶金连接。将制备的冶金复合样品和胶黏泡沫铝夹芯板样品进行三点弯曲疲劳对比试验,结果显示,冶金复合样品和胶黏样品的疲劳极限分别达到3 058 N和2 829 N。在相同载荷下,冶金复合样品的疲劳寿命(S-N)远远长于胶黏样品。两种样品的疲劳破坏方式完全不同,胶黏样品表现为面板和芯层黏接面的脱黏剪切破坏,冶金复合样品的疲劳剪切破坏出现在泡沫铝芯层,没有出现面板脱离现象。  相似文献   

9.
采用液相浸渍炭化技术,在压力为75MPa下制备出4D-C/C复合材料,并进行高温热处理。研究静态和动态加载条件下,材料沿厚度方向的弯曲性能及断裂行为。结果表明,循环次数达到10×105次、频率为10 Hz时,材料的临界弯曲疲劳极限是静态弯曲强度的80%。静态弯曲加载情况下,C/C复合材料失效机制取决于试样底层炭纤维的取向。循环疲劳载荷作用下,其失效机制包括基体开裂、纤维-基体界面弱化及纤维断裂。复合材料在循环加载过程中界面结合强度降低,并释放内应力,故增强了纤维拔出以及复合材料的假塑性,疲劳加载后其剩余弯曲强度增加10%左右,而模量降低。疲劳载荷引起材料基体缺陷和裂纹数量的增加及纤维断裂,削弱了长度方向上的热膨胀,使材料热膨胀系数降低。  相似文献   

10.
对采用熔体发泡法制造的不同密度泡沫铝进行了准静态压缩试验、拉伸试验和弯曲试验。结果表明,泡沫铝的压缩特性曲线包括线弹性变形区、平台区和密实化区。试样的高宽比H/D明显影响压缩应力-应变曲线。当H/D较小时,平台应力曲线较平滑;当H/D较大时,平台应力曲线剧烈波动,呈显著的锯齿状。且在试样中间部位出现与加载轴线呈25°—45°的剪切带。拉伸和弯曲过程中,泡沫铝应力快速增加,当达到应力峰值即屈服点后急剧减小,在最终破断失效前,没有明显的屈服变形带。压缩坪应力Rpl、拉伸屈服应力RUTS和冷弯屈服应力Rf随密度的增加而增加。  相似文献   

11.
Facing compressive failure, facing wrinkling and core shear failure are the most commonly encountered failure modes in sandwich beams with facings made of composite materials. The occurrence and sequence of these failure modes depends on the geometrical dimensions, the form of loading and type of support of the beam. In this paper the above three failure modes in sandwich beams with facings made of carbon/epoxy composites and cores made of aluminum honeycomb and two types of foam have been investigated. Two types of beams, the simply supported and the cantilever have been considered. Loading included concentrated, uniform and triangular. It was found that in beams with foam core facing wrinkling and core shear failure occur, whereas in beams with honeycomb core facing compressive failure and core shear crimping take place. Results were obtained for the dependence of failure mode on the geometry of the beam and the type of loading. The critical beam spans for failure mode transition from core shear to wrinkling failure were established. It was found that initiation of a particular failure mode depends on the properties of the facing and core materials, the geometrical configuration, the type of support and loading of sandwich beams.  相似文献   

12.
The paper concerns local effects occurring in the vicinity of junctions between different cores in sandwich beams subjected to tensile in-plane loading. It is known from analytical and numerical modelling that these effects display themselves by an increase of the bending stresses in the faces as well as the core shear and transverse normal stresses at the junction. The local effects have been studied experimentally to assess the influence on the failure behaviour both under quasi-static and fatigue loading conditions. Typical sandwich beam configurations with aluminium and glass-fibre reinforced plastic (GFRP) face sheets and core junctions between polymer foams of different densities and rigid plywood or aluminium were investigated. Depending on the material configuration of the sandwich beam, premature failure accumulating at the core junction was observed for quasi-static and/or fatigue loading conditions. Using Aluminium face sheets, quasi-static loading caused failure at the core junction, whereas no significance of the junction was observed for fatigue loading. Using GFRP faces, a shift of the failure mode from premature core failure in quasi-static tests to face failure at the core junction in fatigue tests was observed. In addition to the failure tests, the sandwich configurations have been analysed using finite element modelling (FEM) to elaborate on the experimental results with respect to failure prediction. Both linear modelling and nonlinear modelling including nonlinear material behaviour (plasticity) was used. Comparing the results from finite element modelling with the failure behaviour observed in the quasi-static tests, it was found that a combination of linear finite element modelling and a point stress criterion to evaluate the stresses at the core junction can be used for brittle core material constituents. However, this is generally not sufficient to predict the failure modes and failure loads properly. Using nonlinear material properties in the modelling and a point strain criterion improves the failure prediction especially for ductile materials, but this has to be examined further along with other failure criteria.  相似文献   

13.
The flexural fatigue characteristics of FRP sandwich beams are investigated. The skins of the beams are made from hybrid glass-aramid fibres set in epoxy resin and the core material is made from linear PVC foam. The beams under investigation have practical applications in marine operations.
The applied load is uniformly distributed throughout the length of the beam which is simply supported.
From both static and fatigue tests, it is revealed that the failure occurred in the core due to excessive shear, in turn, resulting in large deflections. An empirical expression is derived to postulate a failure criterion.  相似文献   

14.
The research investigated the behaviour of single and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams considering different spans and beam cross sections. The composite sandwich beams with different thicknesses (1, 2, 3, 4, and 5 sandwich layers) have been tested in four-point static flexural test with different shear span to depth ratio (a/d). The a/d ratios showed a direct effect on the flexural and shear behaviour. The capacity of the beam decreased with increasing a/d. Various failure modes were observed including core crushing, core shear, and top skin compression failure. The failure mode map developed based on the experimental finding and analytical prediction indicated that the failure mode is affected by the a/d with the number of glue laminated panels.  相似文献   

15.
为研究真空导入成型的玻璃纤维增强树脂基复合材料-Balsa轻木(GFRP-Balsa)夹芯梁弯曲疲劳性能,进行了普通无格构、单格构增强、双格构增强三种类型共42根试件在不同荷载等级下的四点弯曲疲劳试验,得到夹芯梁的弯曲疲劳破坏模式、疲劳寿命和损伤演化规律,分析了三种类型夹芯梁在弯曲疲劳载荷下不同的损伤机制。研究结果发现,无格构夹芯梁的失效模式统一为芯材剪切和面板脱粘,格构增强夹芯梁的失效模式随格构设置及载荷等级变化,主要有上面板屈曲或压坏、下面板拉断等;采用指数经验模型拟合夹芯梁的疲劳荷载-寿命(S-N)曲线,得到三种类型夹芯梁的寿命预测公式;夹芯梁的位移演化历经"位移瞬降-平稳演化-损伤萌生至破坏"三个阶段,相对于无格构试件,格构增强试件在疲劳失效前有较明显预兆。  相似文献   

16.
Finite element calculations are reported for the dynamic shock response of fully clamped monolithic and sandwich beams, with elastic face sheets and a compressible elastic–plastic core. Predictions of the peak mid-span deflections and deflected shapes of the beams are compared with the previously reported measured response of end-clamped sandwich beams, made from face sheets of glass fibre reinforced vinyl ester and a core of PVC foam or balsa wood [1]. Good agreement is observed, and the maximum sustainable impulse is also predicted adequately upon assuming a tensile failure criterion for the face sheets. The finite element calculations can also be used to bound the response by considering the extremes of a fully intact core and a fully damaged core. It is concluded that the shock resistance of a composite sandwich beam is maximised by selecting a composite with fibres of high failure strain.  相似文献   

17.
The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam.  相似文献   

18.
The dynamic response of clamped sandwich beam with aluminium alloy open-cell foam core subjected to impact loading is investigated in the paper. The face sheet and the core of the sandwich beam have the different thickness. And the sandwich beam is impacted by a steel projectile in the mid-span. The impact force is recorded by using accelerometer. The results show that tensile crack and core shear are the dominant failure modes. And the impact velocity and the thickness of the face sheet and the foam core have a significant influence on the failure modes and the impact forces. Combining with the inertia effect and experimental results, the failure mechanisms of the sandwich beams are discussed. The thickness of the foam core plays an important role in the failure mechanism of the sandwich beam. In present paper, the failure of the sandwich beam with a thin core is dominated by the bending moment, while the sandwich beam with a thick core fails by bending deformation in the front face sheet and the bottom face sheet in opposite direction due to the plastic hinges in the front face sheet.  相似文献   

19.
《Composites》1995,26(12):803-814
An elastic-plastic beam bending model has been developed to simulate the post-upper skin failure energy absorption behaviour of polymer composite sandwich beams under three-point bending. The beam skins consist of woven and chopped strand glass, while the core is a resin impregnated non-woven polyester material known as Coremat. A polyester resin was used for the construction. The theoretical model consists of a central hinge dominated by a crushing core and tensile elastic strains in the lower skin. Experimental measurements of the non-linear force-deflection characteristics for the beam are compared to the theoretical predictions from the model, and it is shown that the shear crushing of the core has an important effect on the behaviour of the beam. The model shows that the most important material properties are the lower skin tensile failure strain and the core crushing strength. Dynamic effects are included in the model in the form of a strain rate dependence of the core crushing stress and the strain rate dependence of the failure strain in the lower skin. The increase in material strength with strain rate gives rise to an improved energy absorption capacity for the beam under impact loading.  相似文献   

20.
Design of sandwich structures for concentrated loading   总被引:1,自引:0,他引:1  
While sandwich construction offers well-known advantages for high stiffness with light weight, the problem of designing the sandwich structure to withstand localized loading, such as from accidental impact, remains an important problem. This problem is more difficult with lower stiffness cores, such as expanded foam. In the present study, experiments have been carried out on foam core sandwich beams with carbon/epoxy faces, under conditions of concentrated loading. The variables considered were the density of the foam and the relative thickness of the core. The common failure modes of sandwich structures were observed, including core failure in compression and shear, delamination, and fiber failure in the faces. These failure modes were systematically related to the test variables by means of a detailed stress analysis of the specimen, and a consideration of the failure properties of the constituent materials. The loading is characterized by localized high stress and strain concentrations that are not predicted in first-order shear deformation sandwich beam theory. The three-dimensional elasticity solution of Pagano was used to obtain the stress distributions. The strength prediction requires a detailed consideration of the localized nature of the loading, including the effects of strain gradients in the faces. The results show that failure modes and load levels can be predicted for sandwich structures under concentrated loading, but that accurate predictions require a consideration of the details of the concentrated loading. The results have a direct application in predicting the ability of sandwich structures to withstand localized loading such as from accidental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号