首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
把全局运动模型配准算法运用到序列图像超分辨重建中,通过与优化的基于频域的配准法进行对比,在运动模型可以准确地反映物体运动状态的情况下,该算法能够更精确地估计运动参数,从而确保重建后的高分辨率图像拥有更多细节信息。同时,阐述了参与重建的低分辨率图像帧数越多,重建精度会越高,但随着帧数的增多,重建误差降低幅度会越低,而算法复杂度及其耗时会过多地增加,因此提出应根据对重建精度的要求而确定参与重建的低分辨率图像的帧数。  相似文献   

2.
充分考虑水下环境和水下成像的特点,将多尺度融合的图像增强算法应用于水下配准算法的预处理图像中,修复深水域偏色严重的图像.用改进SIFT算法进行特征提取,采用自适应阈值法筛选关键点,扩大关键点提取范围;用Canny算法计算关键点的梯度和大小,平滑噪声的同时也可以保留图像更多细节;使用平均Haus-dorff距离和BBF最...  相似文献   

3.
基于SIFT特征的遥感图像配准方法研究与实现   总被引:1,自引:0,他引:1  
讨论了基于SIFT特征的遥感图像配准方法,重点介绍了基于特征点提取的算法描述以及针对基于特征点的遥感图像配准算法流程,并通过实验进行了验证.  相似文献   

4.
基于SIFT特征匹配的监控图像自动拼接   总被引:4,自引:0,他引:4  
针对不同摄像头的监控图像,提出了一种优化的SIFT特征匹配的监控图像自动拼接方法。在图像整合方面,通过高速提取SIFT特征描述符并进行稳定精确匹配,利用改进RANSAC算法去除错配,从而确定待拼接图像之间的变换参数;在图像融合方面,有效消除了颜色和光照差异,最终实现自动的无缝拼接系统。实验结果证明该方法对重叠区域小、形变大、有运动遮挡和噪声的监控图像有较完美的拼接效果。  相似文献   

5.
随着当今社会数字化和信息化程度的不断提高,视觉信息越来越多地以数字图像的形式存在于人们日常的生产生活中.图像处理和机器人视觉作为特征提取和分类技术的主要组成部分,对于视觉信息的高效处理,获取人们需要的信息,给生产生活带来便利.SIFT算法具有良好的图像缩放、平移和旋转稳定性,是现在计算机视觉领域中应用最为广泛的特征提取算法之一.本文就基于SIFT算法的图像配准进行详细探究.  相似文献   

6.
在超分辨率图像重建中,针对精确到亚像素的图像配准,提出了基于MATLAB和SIFT(scale invariant feature transform)配准方法。讨论了基于特征匹配的尺度不变特征变换配准方法的基本原理,并给出了相关推导公式和算法;简单介绍了MATLAB图像处理工具箱的功能;同时,以一个灰度图像为例,用MATLAB语言实现了配准,并给出了相关程序及实验结果图像。实验结果表明:MATLAB环境下的SIFT图像配准难度小,速度快,配准点准确且易于实现。  相似文献   

7.
基于SIFT的POCS图像超分辨率重建   总被引:1,自引:0,他引:1  
针对传统的POCS图像超分辨率重建算法中广泛使用的基于改进的Keren配准算法,对于序列帧间存在剪切和非均匀尺度变换现象时,很难做到精确的亚像素级配准,文中讨论了一种基于SIFT算法的POCS序列图像超分辨率重建算法。首先利用SIFT算法提取序列帧与参考帧间的SIFT关键点对,随后选取匹配关键点对,通过RANSAC去除误配点的同时估算出六参数仿射变换参数,最后使用POCS重建算法得到最终的重建结果。实验结果表明:该方法能有效地解决因运动估计不准而引起的重建图像效果不好的问题,特别是在序列帧间存在剪切和非均匀尺度变换现象时,重建效果明显好于传统的POCS算法,具有更强适应性。  相似文献   

8.
由于可用信息不足,多帧图像超分辨率重建问题常常是一个不适定问题。为解这一问题,需要额外的图像先验知识。本文提出一个基于学习的多帧图像超分辨率重建算法,该方法从训练图像集中学习先验知识。实验表明本文方法要优于传统基于最大后验概率估计的超分辨率重建算法。  相似文献   

9.
基于SIFT特征的眼底图像自动拼接   总被引:2,自引:2,他引:2  
针对眼底图像对比度低、不同视场的图像间存在几何畸变等特点,提出一种基于SIFT特征的眼底图像自动拼接算法。该算法分别提取待拼接眼底图像的SIFT特征点,并用向量进行描述,确定两幅图像特征点的匹配关系,使用MLESAC算法去除误匹配点对,提出对特征点对提纯的距离-斜率相似测度方法,计算匹配点之间的透视变换矩阵,最后进行图像配准和拼接。对实际眼底照相机获取的多幅图像拼接结果表明,该算法具有很好的鲁棒性和稳健性,可以实现眼底图像的高精度自动拼接。  相似文献   

10.
神经网络具有强大的非线性学习能力,基于神经网络的多帧超分辨重建方法获得了初步研究,但这些方法一般只能应用于帧间具有标准位移的控制成像情形,难以推广应用到其他实际情况。为了将神经网络强大的学习能力应用到非控制成像多帧超分辨重建中,以获得更好的超分辨效果,提出了一种利用径向基函数(RBF)神经网络进行解模糊的算法,并将其与多帧非均匀插值结合起来,形成了一种新的两步超分辨算法。仿真实验结果表明,该算法的结构相似度为0.55~0.7。该算法不但扩展了RBF神经网络的应用范围,还获得了更好的超分辨性能。  相似文献   

11.
由不同传感器摄取的遥感影像因成像模式、拍摄角度和分辨率不同,给两者之间的配准造成困难。针对该问题,提出归一化SIFT算法,通过对SIFT描述子归一化的处理,降低不同光学影像色调差异大的影响,并通过与最小二乘法和双线性内插法的结合,完成自动配准。选取角度和尺度偏差较大的SPOT与ASTER影像、ASTER与TM影像2组数据进行实验。结果证明,该算法鲁棒性强,配准精度高。  相似文献   

12.
一种遥感图像的配准方法   总被引:1,自引:0,他引:1  
综合利用、处理多源遥感图像数据理论与方法的需求越来越多,其中配准是使用遥感图像中重要的预处理步骤.SIFT算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征.然后使用RANSAC算法剔除误匹配点,使用最小二乘法拟合图像的变换函数.试验证明了SIFT...  相似文献   

13.
Super-resolution applications require sub-pixel registrations of low resolution images to be almost exact due to the deterioration caused by inaccurate image registration. A linear-least-squares technique is proposed to refine sub-pixel translation parameters, which can be employed when the images are registered but just where there is not enough sub-pixel accuracy. In the technique, it is assumed that low resolution pixels are obtained by area sampling high resolution pixel field which have twice the density of their low resolution correspondents. Using this downsampling schema, a set of equations is formed. Assumed geometry and layout provide a constraint set to be used with the equation set. The sub-pixel translations are then found using least-squares-solution-with-equality-constraints. The method is shown to improve the registration accuracy.  相似文献   

14.
针对目前无人机航空影像非同源、畸变大、处理量多的问题,提出一种改进的无人机航空影像配准方法;首先利用传统SIFT方法得到特征点,其次利用C均值聚类方法可实现准确的非监督分类的特点,对传统SIFT方法得到的特征点进行筛选,从而得出同名点;最后根据得到的同名点完成待匹配图像的投影变换完成配准;通过实验仿真证明该方法精度有较大提高,且可自适应处理不同图像,是一种有效的无人机航空影像匹配改良方法.  相似文献   

15.
提出一种图像超分辨率复原算法,该算法考虑了运动矢量和点扩散函数估计不精确的情况。由于估计的不精确造成每帧低分辨率图像具有不同的噪声,算法根据各帧低分辨率图像的可靠性,相应地给它们赋予不同的权值,应用梯度下降法不断对权值及高分辨率图像进行更新。实验结果表明该算法较传统的MAP算法具有更好的复原效果。  相似文献   

16.
17.
提出邻域内坐标线性变换的光流计算迭代解法。算法允许计算光流的图像间存在一定的灰度偏差,光流计算结果稳定。对于含较大位移的两幅图像,以往方法要用金字塔图像方法计算光流,而该算法则可以一步求解得到图像间最佳整体匹配,比金字塔方法更有优势。算法对图像整体的尺度、平移、旋转或其它线性变换能有效检测。用于人脸图像配准的实验显示,该算法对图像匹配空间搜索有效可行。  相似文献   

18.
传统的眼底图像拼合主要采用SIFT算法实现,算法计算量大,效率低,准确率也不高.Harris提取的是图像的角点信息,能较好准确地反应图像的特征信息.作者采用Harris和SIFT算法相结合的方式,采用Harris算法提取的角点信息,并用这些角点提取SIFT特征描述符,且在图像拼合的过程中对算法做出相应的改进,克服了多模式图像中局部梯度信息不一致带来的误差,计算效率高,且拼合效果较好.  相似文献   

19.
角点含有丰富的图像结构信息,在图像配准中是广泛应用的图像特征。Harris算法是经典的角点提取算法,Harris角点对图像旋转具有不变性,但对尺度变化敏感,在有尺度变化的图像配准中,应用受限。仿照SIFT特征点提取过程,提出了一种多尺度角点提取方法,提取的多尺度角点对图像旋转和尺度变化有很好的适用性。并用SIFT描述子描述,用光学及SAR图像进行了配准实验。结果表明,与SIFT、Harris算法相比,本文方法在保证配准精度的基础上,配准时间减少40%以上,特征点在配准过程中的利用率提高一倍多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号