首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comb‐like polyether, poly(3‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxymethyl‐3′‐methyloxetane) (PMEOX), was reacted with hexamethylene diisocyanate and extended with butanediol in a one‐pot procedure to give novel thermoplastic elastomeric poly(ether urethane)s (TPEUs). The corresponding hybrid solid polymer electrolytes were fabricated through doping a mixture of TPEU and poly(vinylidene fluoride) with three kinds of lithium salts, LiClO4, LiBF4 and lithium trifluoromethanesulfonimide (LiTFSI), and were characterized using differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. The ionic conductivity of the resulting polymer electrolytes was then assessed by means of AC impedance measurements, which reached 2.1 × 10?4 S cm?1 at 30 °C and 1.7 × 10?3 S cm?1 at 80 °C when LiTFSI was added at a ratio of O:Li = 20. These values can be further increased to 3.5 × 10?4 S cm?1 at 30 °C and 2.2 × 10?3 S cm?1 at 80 °C by introducing nanosized SiO2 particles into the polymer electrolytes. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
A series of solid polymer electrolytes (SPEs) based on comb‐like nonionic waterborne polyurethane (NWPU) and LiClO4 are fabricated via a solvent free process. The NWPU‐based SPEs have sufficient mechanical strength which is beneficial to their dimensional stability. Differential scanning calorimetry analysis indicates that the phase separation occurs by the addition of the lithium salt. Scanning electron microscopy and X‐ray diffraction analyses illustrate the good compatibility between LiClO4 and NWPU. Fourier transform infrared study reveals the complicated interactions among lithium ions with the amide, carbonyl and ether groups in such SPEs. AC impedance spectroscopy shows the conductivity of the SPEs exhibiting a linear Arrhenius relationship with temperature. The ionic conductivity of the SPE with the mass content of 15% LiClO4 (SPE15) can reach 5.44 × 10?6 S cm?1 at 40 °C and 2.35 ×10?3 S cm?1 at 140 °C. The SPE15 possesses a wide electrochemical stability window of 0–5 V (vs. Li+/Li) and thermal stability at 140 °C. The excellent properties of this new NWPU‐based SPE are a promising solid electrolyte candidate for all‐solid‐state lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45554.  相似文献   

4.
Imidazolium‐functionalized norbornene and benzene‐functionalized norbornene were synthesized and copolymerized via ring‐opening metathesis polymerization to afford a polymeric ionic liquid (PIL) block copolymers {5‐norbornene‐2‐methyl benzoate‐block ‐5‐norbornene‐2‐carboxylate‐1‐hexyl‐3‐methyl imidazolium bis[(trifluoromethyl)sulfonyl]amide [P(NPh‐b ‐NIm‐TFSI)]} with good thermal stability. On this basis, the solid electrolyte, P(NPh‐b ‐NIm‐TFSI)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), through blending with LiTFSI, and the nanosilica composite electrolyte, P(NPh‐b ‐NIm‐TFSI)–LiTFSI–SiO2, through blending with LiTFSI and nanosilica, were prepared. The effects of the PILs and silica compositions on the properties, morphology, and ionic conductivity were investigated. The ionic conductivity was enhanced by an order of magnitude compared to that of polyelectrolytes with lower PIL compositions. In addition, the ionic conductivity of the nanosilica composite polyelectrolyte was obviously improved compared with that of the P(NPh‐b ‐NIm‐TFSI)–LiTFSI polyelectrolyte and increased progressively up to a maximum with increasing silica content when SiO2 was 10 wt % or lower. The best conductivity of the P(NPh‐b ‐NIm‐TFSI)–20 wt % LiTFSI–10 wt % SiO2 composite electrolyte with 7.7 × 10?5 S/cm at 25 °C and 1.3 × 10?3 S/cm at 100 °C were obtained, respectively. All of the polyelectrolytes exhibited suitable electrochemical stability windows. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44884.  相似文献   

5.
Polybenzimidazoles containing different contents of pendant nitrophenoxy groups were prepared by condensation of 3,3′‐diamino‐benzidine with a mixture of 3,5‐dicarboxyl‐4′‐nitro diphenyl ether and isophthalic acid (IPA) in different ratios in polyphosphoric acid. The polymers are soluble in polar aprotic solvents, they have inherent viscosities in the range of 0.75–1.10 dL g?1 and they form tough and transparent films on solution casting. They have good thermal stability with initial decomposition temperature ranging from 380 to 416°C in nitrogen, good tensile strength ranging from 56 to 65 MPa and reasonably good oxidative stability. Phosphoric acid uptake of these polymers is low compared with PBI and membranes doped with phosphoric acid exhibit good proton conductivity in the range of 6.6× 10?3 to 1.9× 10?2 S/cm at 25°C and 1.2× 10?2 to 4.9× 10?2 S/cm at 175°C, compared with 3.9× 10?3 S/cm at 25°C and 3.2× 10?2 S/cm at 175°C for PBI. These membranes are suitable for applications as polymer electrolyte for fuel cell and presumably for gas separation at high temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The transparent and flexible solid polymer electrolytes (SPEs) were fabricated from polyacrylonitrile‐polyethylene oxide (PAN‐PEO) copolymer which was synthesized by methacrylate‐headed PEO macromonomer and acrylonitrile. The formation of copolymer is confirmed by Fourier‐transform infrared spectroscopy (FTIR) measurements. The ionic conductivity was measured by alternating current (AC) impedance spectroscopy. Ionic conductivity of PAN‐PEO‐LiClO4 complexes was investigated with various salt concentration, temperatures and molecular weight of PEO (Mn). And the maximum ionic conductivity at room temperature was measured to be 3.54 × 10?4 S/cm with an [Li+]/[EO] mole ratio of about 0.1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 461–464, 2006  相似文献   

7.
The recently developed technique of cold sintering process (CSP) enables densification of ceramics at low temperatures, i.e., <300°C. CSP employs a transient aqueous solvent to enable liquid phase‐assisted densification through mediating the dissolution‐precipitation process under a uniaxial applied pressure. Using CSP in this study, 80% dense Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolytes were obtained at 120°C in 20 minutes. After a 5 minute belt furnace treatment at 650°C, 50°C above the crystallization onset, Li‐ion conductivity was 5.4 × 10?5 S/cm at 25°C. Another route to high ionic conductivities ~10?4 S/cm at 25°C is through a composite LAGP ‐ (PVDF‐HFP) co‐sintered system that was soaked in a liquid electrolyte. After soaking 95, 90, 80, 70, and 60 vol% LAGP in 1 M LiPF6 EC‐DMC (50:50 vol%) at 25°C, Li‐ion conductivities were 1.0 × 10?4 S/cm at 25°C with 5 to 10 wt% liquid electrolyte. This paper focuses on the microstructural development and impedance contributions within solid electrolytes processed by (i) Crystallization of bulk glasses, (ii) CSP of ceramics, and (iii) CSP of ceramic‐polymer composites. CSP may offer a new route to enable multilayer battery technology by avoiding the detrimental effects of high temperature heat treatments.  相似文献   

8.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

9.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

10.
Hyperbranched polymer was synthesized from pentaerythritol (as the central core), 1,2,4‐trimellitic anhydride, and epichlorohydrin, and then hyperbranched polymer electrolytes with terminal ionic groups were prepared by the reaction of hyperbranched polymer with N‐methyl imidazole. The chemical structure, thermal behavior, and ionic conductive property of the hyperbranched polymer electrolytes were investigated by 1H‐NMR, FTIR, differential scanning calorimetry, thermogravimetric analyzer, and complex impedance analysis, respectively. The ionic conductivity of hyperbranched polymer electrolyte was up to 2.4 × 10?4 S cm?1 at 30°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Natural polymers are widely used as matrices for solid polymer electrolytes (SPEs) in electrochemical devices due to their richness in nature, low cost, and biodegradation properties. Xanthan gum (XG) is a natural polymer obtained from microbial origin and when dissolved form transparent solution with high viscosity and stability even in different temperature conditions. This article describes the synthesis of XG‐based SPEs with proton conduction. These new materials were obtained by crosslinking XG with glutaraldehyde, plasticized with ethylene glycol, and doped with acetic acid as ions source. The ionic conducting membranes, casted from this polymer solution, showed a high ionic conductivity of 7.93 × 10?5 S cm?1 at room temperature, a microscopically homogeneous surface, thermal stability, and predominantly amorphous structure. These results prove that XG‐based SPEs are very promising new materials that could be applied in modern electrochemical devices. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46229.  相似文献   

12.
An ionic liquid 1‐methyl‐3‐[2‐(methacryloyloxy)ethyl]imidazolium bis(trifluoromethane sulfonylimide) (MMEIm‐TFSI) was synthesized and polymerized. Composite polymer electrolytes based on polymeric MMEIm‐TFSI (PMMEIm‐TFSI) and poly[(methyl methacrylate)‐co‐(vinyl acetate)] (P(MMA‐VAc)) were prepared, with lithium bis(trifluoromethane sulfonylimide) (LiTFSI) as target ions (Li+). DSC/TGA analysis showed good flexibility and thermal stability of the composite electrolyte membranes. The AC impedance showed that the ionic conductivity of the electrolytes increased with PMMEIm‐TFSI up to a maximum value of 1.78 × 10?4 S cm?1 when the composition was 25 wt% P(MMA‐VAc)/75 wt% PMMEIm‐TFSI/30 wt% LiTFSI at 30 °C. The composite electrolyte membrane (transmittance ≥ 90%) can also be used as the ion‐conductive layer material for electrochromic devices, and revealed excellent colorization performance. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Three new polymeric aromatic lithium sulfonylimides were used as salts in high molecular weight poly(ethylene oxide) (PEO) electrolytes. Their conductivity and electrochemical stability behaviors were investigated. The electrolytes with lithium poly[4,4′‐(hexafluoroisopropylidene)diphenoxy]sulfonylimide (LiPHFIPSI) showed a better conductive performance compared with the other two lithium salts. The best conductivity was obtained for PEO/LiPHFIPSI EO/Li = 16 (1.90 × 10?4 S/cm at 60°C). Thermal analysis indicated that the salts effectively decreased the crystallinity of PEO. Moreover, the electrolytes also had good electrochemical stability and their oxidative potential was to 5.5 V versus Li/Li+. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1802–1805, 2002  相似文献   

14.
A new hybrid polymer electrolyte system based on chemical‐covalent polyether and siloxane phases is designed and prepared via the sol–gel approach and epoxide crosslinking. FT‐IR, 13C solid‐state NMR, and thermal analysis (differential scanning calorimetry (DSC) and TGA) are used to characterize the structure of these hybrids. These hybrid films are immersed into the liquid electrolyte (1M LiClO4/propylene carbonate) to form plasticized polymer electrolytes. The effects of hybrid composition, liquid electrolyte content, and temperature on the ionic conductivity of hybrid electrolytes are investigated and discussed. DSC traces demonstrate the presence of two second‐order transitions for all the samples and show a significant change in the thermal events with the amount of absorbed LiClO4/PC content. TGA results indicate these hybrid networks with excellent thermal stability. The EDS‐0.5 sample with a 75 wt % liquid electrolyte exhibits the ionic conductivity of 5.3 × 10?3 S cm?1 at 95°C and 1.4 × 10?3 S cm?1 at 15°C, in which the film shows homogenous and good mechanical strength as well as good chemical stability. In the plot of ionic conductivity and composition for these hybrids containing 45 wt % liquid electrolyte, the conductivity shows a maximum value corresponding to the sample with the weight ratio of GPTMS/PEGDE of 0.1. These obtained results are correlated and used to interpret the ion conduction behavior within the hybrid networks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1000–1007, 2006  相似文献   

15.
Quaternized poly(phthalazinone ether ketone)s (QPPEK)s were synthesized by the chloromethylation and quaternization of poly(phthalazinone ether ketone) (PPEK) with chloromethyl methyl ether in 98% concentrated sulfuric acid and following trimethylamine. The presence of ? CH2Cl groups in chloromethylated PPEK was confirmed by 1H‐NMR. An alkaline QPPEK membrane was prepared and its thermal and mechanical properties were tested. The alkaline QPPEK membrane had a methanol permeability 6.57 × 10?7 cm2/s and the highest anion conductivity 1.14 × 10?2 S/cm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Biodegradable solid polymer electrolyte (SPE) systems composed of hydroxylethyl cellulose blended with copper(II) oxide (CuO) and yttrium(III) oxide (Y2O3) nanoparticles as fillers, magnesium trifluoromethane sulfonate salt, and 1‐ethyl‐3‐methylimidazolium trifluoromethane sulfonate ionic liquid were prepared, and the effects of the incorporation of CuO and Y2O3 nanoparticles on the performance of the SPEs for electric double‐layer capacitors (EDLCs) were compared. The X‐ray diffraction results reveal that the crystallinity of the SPE complex decreased upon inclusion of the Y2O3 nanoparticles compared to CuO nanoparticles; this led to a higher ionic conductivity of the Y2O3‐based SPE [(3.08 ± 0.01) × 10?4 S/cm] as compared to CuO [(2.03 ± 0.01) × 10?4 S/cm]. The EDLC performances demonstrated that the cell based on CuO nanoparticles had superior performance in terms of the specific capacitance, energy, and power density compared to the Y2O3‐nanoparticle‐based cell. However, Y2O3‐nanoparticle‐based cell displayed a high cyclic retention (91.32%) compared to the CuO‐nanoparticle‐based cell (80.46%) after 3000 charge–discharge cycles. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44636.  相似文献   

17.
On the basis of sol–gel methodology, a novel degradable hybrid electrolyte, poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA)/silicon dioxide (SiO2) hybrid electrolyte, was prepared from PLA, methyl methacrylate, and tetraethoxylsilicon with 3‐methacryloxypropyl trimethoxysilane as a coupling agent. As observed from Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy spectra, the PLA, PMMA, and silica units were linked by covalent bonds through the coupling agent in a hybrid network. Differential scanning calorimetry results show that the heat‐resistance properties of the hybrid electrolyte improved with increasing SiO2 content. The hybrid electrolyte was shown to be amorphous by the X‐ray diffraction results. From study of ionic conductivity by alternating‐current impedance, the ionic conductivity of the PLA/PMMA/SiO2 hybrid electrolyte increased with increasing silica content, reached a maximum value of 2.42 × 10?4 S/cm at 2 wt % SiO2, and then decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
《Ceramics International》2023,49(5):7935-7945
Solid polymer electrolytes (SPEs) have attracted much attention because of their potential in improving energy density and safety. Vanadium doped ceramic matrix Li6.7La3Zr1.7V0.3O12 (LLZVO) was synthesized by high-temperature annealing, and formed a composite electrolyte with polyethylene oxide (PEO). Compared with pure PEO electrolyte membrane, the composite electrolyte membrane exhibited better ionic conductivity (30 °C: 3.2 × 10?5 S cm?1; 80 °C: 3.6 × 10?3 S cm?1). The combination of LLZVO was beneficial to improve the lithium ion transference number (tLi+) of SPE, which was as high as 0.81. The Li/SPE/LiFePO4 battery shows good cycling ability, with a specific capacity of 142 mAh g?1 after a stable cycle of 150 cycles. Meanwhile, the symmetrical lithium battery with composite electrolyte can work continuously for 1200 h without short circuit at the current density of 0.1 mA cm?2 at 50 °C, and the capacity is 0.176 mAh. Vanadium doped ceramic matrix LLZVO as an active ionic conductor, improved the overall performance of solid electrolyte.  相似文献   

19.
The reactive rate and surface wettability of three pentablock copolymers PDMS‐b‐(PMMA‐b‐PR)2 (R = 3FMA, 12FMA, and MPS) obtained via ATRP for coatings are discussed. Poly(dimethylsiloxane) (PDMS) is used as difunctional macroinitiator, poly(methyl methacrylate) (PMMA) as the middle block, while poly(trifluoroethyl methacrylate) (P3FMA), poly(dodecafluoroheptyl methacrylate) (P12FMA) and poly(3‐(trimethoxysilyl)propyl methacrylate) (PMPS) as the end block, respectively. Their reactive rates obtained by gas chromatography (GC) analysis indicate that 3FMA gains 8.053 × 10?5 s?1 reactive rate and 75% conversion, higher than 12FMA (4.417 × 10?5 s?1, 35%), but MPS has 1.9389 × 10?4 s?1 reactive rate and 96% conversion. The wettability of pentablock copolymer films is characterized by water contact angles (WCA) and hexadecane contact angles (HCA). The PDMS‐b‐(PMMA‐b‐P12FMA)2 film behaves much higher advancing and receding WAC (120° and 116°) and HCA (60° and 56°) than PDMS‐b‐(PMMA‐b‐P3FMA)2 film (110° and 106° for WAC, 38° and 32° for HAC) because of its fluorine‐rich surface (20.9 wt % F). However, PDMS‐b‐(PMMA‐b‐PMPS)2 film obtains 8° hysteretic contact angle in WAC (114°–106°) and HAC (32°–24°) due to its higher surface roughness (138 nm). Therefore, the fluorine‐rich and higher roughness surface could produce the lower water and oil wettability, but silicon‐rich surface will produce lower water wettability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40209.  相似文献   

20.
A methyl morpholinium-functionalized poly(ether sulfone) (MM-PES) copolymer was prepared as a novel anion exchange membrane. The MM-PES polymer was synthesized by polycondensation between the morpholine-containing hydroquinone and bisphenol A with bis(4-fluorophenyl)sulfone, followed by methylation of the morpholine group. The membrane obtained from MM-PES showed an IEC of 0.90 meq/g with high hydroxide conductivity of 1.6 × 10?2 S/cm at r.t. and 7.9 × 10?2 S/cm at 80 °C. The methyl morpholinium-functionalized PES membrane also displayed good hydrolytic, thermal, mechanical and chemical stabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号