首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural rubber composites were prepared by the incorporation of palm ash at different loadings into a natural rubber matrix with a laboratory‐size two‐roll mill (160 × 320 mm2) maintained at 70 ± 5°C in accordance with the method described by ASTM D 3184–89. A coupling agent, maleated natural rubber (MANR), was used to improve the mechanical properties of the natural rubber composites. The results indicated that the scorch time and cure time decreased with increasing filler loading, whereas the maximum torque exhibited an increasing trend. Increasing the palm ash loading increased the tensile modulus, but the tensile strength, fatigue life, and elongation at break decreased. The rubber–filler interactions of the composites decreased with increasing filler loading. Scanning electron microscopy of the tensile fracture surfaces of the composites and rubber–filler interaction studies showed that the presence of MANR enhanced the interfacial interaction of the palm ash filler and natural rubber matrix. The presence of MANR also enhanced the tensile properties and fatigue life of palm‐ash‐filled natural rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A novel method was attempted to reinforce a vinyl‐terminated polydimethylsiloxane (PDMS) with two commercially available clays, sodium montmorillonite and Cloisite® 25A. The two clays were functionalized with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT) to prepare Na+MMTS4 and C25AS4, respectively. Incorporation of the tetrasulfide group‐containing clays, especially Na+MMTS4, was found to be effective for the enhancement of the interfacial interaction between PDMS and the clays by way of a plausible chemical reaction between the tetrasulfide groups (TSS) and the vinyl‐terminated PDMS. Compounding of PDMS with the TESPT‐modified clays improved the mechanical properties significantly. In particular, the elongation at break of PDMS/Na+MMTS4 composite was almost twice as high as that of neat PDMS, even if the silicate layers were not fully exfoliated in the PDMS matrix. The tear strength of PDMS was also improved greatly as a result of the incorporation of Na+MMTS4. According to toluene swelling test results, the crosslinking density of the composites was lower than that of neat PDMS, indicating that the improved mechanical properties of the composites arise from enhanced compatibility between the constituents and not from increased crosslinking density. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
A commercially available organomodified clay, Cloisite 25A, was modified with 3‐aminopropyltriethoxysilane, 3‐(glycidoxypropyl)trimethoxysilane, and 3‐isocyanate propyltriethoxysilane to enhance its interaction with the nylon 6 matrix. Composites made of nylon 6 and clays modified with the different silane compounds were prepared by melt mixing with a twin‐screw extruder. The dispersion and degree of exfoliation of the organomodified clays were evaluated from X‐ray diffraction patterns and transmission electron microscopy images of the corresponding composites. The tensile properties of the composites were measured, and their enhancement was attributed to the work of adhesion and interfacial tension of the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Poly(p‐phenylene‐2,6‐benzobisoksazole) (PBO) and natural rubber (NR)/high density polyethylene (HDPE) composites were melt‐blended in a Haake internal mixer. The tensile strength, tensile modulus, and impact strength increased with fiber loading and optimized at 20%. Incorporation of clay into the NR/HDPE/PBO composites resulted in an improvement of tensile strength for NR/HDPE/PBO composites compared to the systems without clay. However, addition of clay was only effective at low contents (5–7.5%). Additional improvement of tensile strength, tensile modulus, and impact strength of the hybrid composite was observed on addition of liquid natural rubber (LNR). Scanning electron micrographs of the samples had indicated that the presence of clay decreased the domain size of the dispersed phase. Results on dynamic response showed that incorporation of clay and LNR into the composites had increased the storage modulus and reduced the tan δ. The shift of glass transition temperature (Tg) to higher values for composites also indicated good interaction between the fiber and the matrix. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

5.
Rubber‐based nanocomposites were prepared with octadecyl amine modified sodium montmorillonite clay and styrene–butadiene rubber with different styrene contents (15, 23, and 40%). The solvent used to prepare the nanocomposites, the cure conditions, and the cure system were also varied to determine their effect on the properties of the nanocomposites. All the composites were characterized with X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies revealed exfoliation for the modified clay–rubber composites. The TEM photomicrographs showed a uniform distribution of the modified clay in the rubber matrix. The thickness of the particles in the exfoliated composites was around 10–15 nm. Although the FTIR study of the unmodified and modified clays showed extra peaks due to the intercalation of the amine chains into the gallery, the spectra for the rubber–clay nanocomposites were almost the same because of the presence of a very small amount of clay in the rubber matrix. All the modified clay–rubber nanocomposites displayed improved mechanical strength. The styrene content of the rubber had a pronounced effect on the properties of the nanocomposites. With increasing styrene content, the improvement in the properties was greater. Dicumyl peroxide and sulfur cure systems displayed similar strength, but higher elongation and slightly lower modulus values were obtained with the sulfur cure system. The curing of the samples at four different durations at 160°C showed that the cure time affected the properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 698–709, 2004  相似文献   

6.
Swelling of polymer composites in solvents has become one of the major problems in the use of polymer composites exposed to petroleum products. As a possible solution to the problem, this experimental study was conducted to examine the potential application of TiB2 ceramic in butyl rubber (IIR) composites. The effect of TiB2 content on the curing kinetics of IIR composites was studied using a torque rheometer technique. The effect of TiB2 on the network structure was investigated in terms of the crosslinking density, interparticle distance between conducting particles, surface tension, glass transition temperature, degree of crystallinity, scanning electron microscopy, and X‐ray analysis. Moreover, the effect of TiB2 content on the molecular transport of solvent (kerosene) was examined by means of degree of swelling, solvent interaction parameters, volume fraction of rubber, interparticle distance after swelling, penetration rate of solvent, mean diffusion coefficient, cohesive energy density of polymer, standard entropy, standard enthalpy, and standard free energy of IIR composites. It was ascertained that with increasing TiB2 content the degree of swelling shifts to a lower value. The main reason was interpreted as the introduction of good interface adhesion of TiB2 with rubber matrix, which tends to block the diffusion of solvent molecules. The effect of TiB2 content on hardness, tensile strength, Young's modules, and elongation at break is discussed. An apparent steady‐state creep of butyl rubber IIR/TiB2 composites is evident under different constant stresses at room temperature. The strain rate of steady‐state creep showed a dependence on stress and TiB2 volume fraction. The stress sensitivity parameter, viscosity coefficient, and activation volume for samples loaded with different content of TiB2 were estimated. It is apparent that these new composites should be very useful for solvent permeation resistance at high TiB2 loading level with good mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2226–2235, 2005  相似文献   

7.
A series of novel polydimethylsiloxane (PDMS) composites were prepared using octa[(trimethoxysilyl)ethyl]‐POSS (OPS) as cross‐linker and fumed silica as reinforcing filler. The cross‐linked networks, morphologies, thermal and mechanical properties of these novel PDMS composites were examined by attenuated total reflection infrared spectroscopy and the extraction/swelling experiment, scanning electron microscope, thermogravimetric analysis, and universal tensile testing machine, respectively. It was found that both the resistance to thermal degradation and mechanical properties of the novel PDMS composites were improved greatly by adding fumed silica. The prominent improvements in resistance to thermal degradation and mechanical properties of novel PDMS composites were likely attributed to the enhanced interaction of PDMS chains and aggregated particles resulted from synergistic effect between POSS and fumed silica. Meanwhile, we also found that the resistance to thermal degradation of the PDMS composites was lowered slightly with the further increment in loading fumed silica, but their mechanical properties were enhanced. The slight decrease in trend of the resistance to thermal degradation of the novel PDMS composites was likely ascribed to the increasing amount of hydroxyl groups resulting from fumed silica. And the improving mechanical properties were mainly attributed to the increasing interaction of PDMS chains and aggregated particles originated from synergistic effect between POSS and fumed silica. POLYM. COMPOS., 34:1041–1050, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
To improve adhesion between fiber and matrix, natural rubber was reinforced with a special type of alkali‐treated grass fiber (Cyperus Tegetum Rox b). The cure characteristics and mechanical properties of grass‐fiber‐filled natural rubber composites with different mesh sizes were studied with various fiber loadings. Increasing the amount of fibers resulted in the composites having reduced tensile strength but increased modulus. The better mechanical properties of the 400‐mesh grass‐fiber‐filled natural rubber composite showed that the rubber/fiber interface was improved by the addition of resorcinol formaldehyde latex (RFL) as bonding agent for this particular formulation. The optimum cure time decreased with increases in fiber loading, but there was no appreciable change in scorch time. Although the optimum cure time of vulcanizates having RFL‐treated fibers was higher than that of the other vulcanizates, it decreased with fiber loading in the presence of RFL as the bonding agent. But this value was lower than that of the rubber composite without RFL. Investigation of equilibrium swelling in a hydrocarbon solvent was also carried out. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3151–3160, 2006  相似文献   

9.
The low‐temperature grade hydrogenated nitrile butadiene rubber (LTG‐HNBR) composites with organoclays were successfully prepared for the purpose of using the clay‐networks to improve bulk properties. In order to construct different clay‐networks, three montmorillonite (MMT) modified by surfactants were added and then their dispersions and affinities in the rubber were compared. Transmission electron microscope and small‐angle X‐ray scattering results showed that 10 phr organoclays form partially exfoliated and intercalated structures in the matrix despite of modifier types. FTIR and particle analysis data display that increasing the number of alkyl tails of modifier molecules decreases the affinities of clays and their extent of intercalation in rubber whereas the special modifier with coupling agent enhances their compatibility with the bulk. The mechanical, oil resistance, and thermal properties of the composites are greatly reinforced by clay‐networks which parallel their interactions. Importantly, the addition of clays barely changes glassy temperature (Tg) of rubber bulk, but it improves its low‐temperature elasticity. Therefore, it is stressed that organoclay hybrid networks are very useful to modify low‐temperature rubber. We believe that LTG‐HNBR composites with organoclays may serve some applications of oil‐sealing products. POLYM. COMPOS., 35:1306–1317, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Rubber/organic clay (OC) nanocomposites were produced by melt blending. Polar or unsaturated matrices (e.g., NBR and SBR) could easily enter into OC layers, whereas using nonpolar unsaturated rubber (EPDM), without other additives' help, intercalation structure could not be directly obtained. For the EPDM system, an intercalated structure was observed in presence of stearic acid (SA) for composites composed of SA and OC. Transmission electron microscopy observation showed that the dispersion of clay in nonpolar saturated rubber matrix was much poorer than that in polar or unsaturated matrix. The same effect of polar matrix was confirmed by comparison between IIR/OC and BIIR/OC systems. Moreover, using OC pretreated by SA (S‐OC), the dispersion of clay was obviously improved in the investigated nanocomposites, due to the intercalation of SA into OC interlayers. Especially in the nonpolar saturated EPDM system, the intercalation structure could be easily observed. Relative to the corresponding nanocomposites using OC, tensile strengths and the stresses at low strain of NBR and SBR based nanocomposites with S‐OC were significantly improved; while with EPDM nanocomposite, using S‐OC, only tensile strengths were improved but the stresses at low strain were almost the same, which should be related to the different interfacial force between OC and different rubber matrices. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Composites of polydimethylsiloxane (PDMS) rubber modified by three kinds of polyhedral oligomeric silsesquioxanes (POSSs) as well as fumed silica were prepared through solution blending and then open two‐roll mill blending with curing agent. Subsequently, the influences of POSS on mechanical and thermal properties of the resulting composites were investigated in detail. The addition of POSS significantly enhanced the tensile strength and elongation at break of the composite but lowered the tensile modulus, which could be ascribed to the interruption of silica–silica and silica–PDMS interactions. Octamethylsilsesquioxane (OMS)/silica/PDMS and octaphenylsilsesquioxane (OPS)/silica/PDMS composites did not show desirable mechanical and thermal properties. Nevertheless, heptaphenylvinylsilsesquioxane (VPS)/silica/PDMS composite with 5 wt % VPS exhibited enhanced glass transition temperature (Tg), mechanical properties, and thermal stability. Further studies revealed that more VPS unfavorably affected properties of the composite. Scanning electron microscope and X‐ray diffraction demonstrated that owing to the grafting reaction, 5 wt % VPS in the rubber matrix could form microcrystal domains the most effectively. Thus, the improved mechanical properties and thermal stability just resulted from the the formation of microcrystal domains and the increase in stiffness of PDMS chains because of the graft of VPS onto PDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42173.  相似文献   

12.
Epoxy‐based composites containing sodium montmorillonite (MMT) modified by silylation reaction with 3‐aminopropyltriethoxysilane (A1100) and N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (A1120) were prepared. The effect of MMT chemical functionalization, as well as inorganic content and dispersion method (i.e., sonication or combination of sonication and ball‐milling) on the morphology and mechanical and thermal properties of composites was thoroughly investigated by X‐ray diffraction analysis, dynamic mechanical and tensile static analysis, nanoindentation measurements and cone calorimeter tests. Morphological characterization showed that the MMT particles are only slightly intercalated by epoxy molecules. Tensile stress, elongation at failure, and toughness of the epoxy composites based on silylated MMT were found to be improved. The presence of 1 and 3% wt/wt of A1100 and A1120 silylated MMT clays allowed the tensile elastic modulus to increase respectively, of about 10 and 15% with respect to the pristine epoxy matrix. The overall results showed that (1) the silylation of MMT clays is a valuable method to improve the interfacial interaction between filler and epoxy matrix and (2) the interfacial interaction plays a role more significant than the clay morphology (i.e., the extent of clay intercalation/exfoliation) over the composite properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Ethylene propylene rubber–clay nanocomposites (EPR–CNs) were prepared by melt‐compounding maleic anhydride modified EPR (EPR‐MA) with organophilic clay, and their properties were examined. Silicate layers of organophilic clay were found to exfoliate and homogeneously disperse into the nanometer level in the nanocomposites by transmission electron microscopy observation. EPR–CNs exhibited higher tensile moduli compared to EPR‐MA and composites containing conventional fillers such as carbon black, talc. The storage moduli of EPR–CNs were also higher than those of EPR‐MA and the conventional composites. Creep resistances of EPR–CNs were much improved compared for EPR‐MA. Degree of swelling in hexadecane was remarkably restricted. Improvement of these properties is caused because dispersed silicate layers have much large interface with the EPR matrix and are thought to strongly restrain the EPR polymer chains. Nanocomposite technology using small amount of silicate layers is useful to improve properties of thermoplastic elastomer. Various kinds of thermoplastic elastomers are expected to be produced by loading of silicate layers with or without conventional fillers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 758–764, 2004  相似文献   

14.
A new type of polymeric curing agent (PCA) was synthesized to improve processing property, increase mechanical properties, and decrease volume shrinkage of silicone rubber. The PCA was prepared by co‐hydrolysis condensation of dimethyldiethoxysilane (DDS) and polyethoxysiloxane, then modified by hexamethylcyclotrisilazane (D3N). Commercial silica and tetraethoxysilane (TEOS) were used as controls simultaneously. The properties of polydimethylsiloxane (PDMS) composites were characterized by shear viscosity measurements, room temperature mass loss, linear volume shrinkage, stress‐strain tests, swelling behaviors and thermogravimetric analysis (TGA). PDMS composites using PCA show lower shear viscosity than those using commercial silica. Compared with the traditional PDMS/TEOS curing systems, PDMS/PCA curing systems behave relatively lower volume shrinkage, better reinforcement and thermal properties. In short, PCA acts as a good compromise in providing the best balance of processing property, volume shrinkage, mechanical properties and thermal stability in silicone rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix.  相似文献   

16.
《Polymer Composites》2017,38(5):966-973
Layered montmorillonite was synthesized by hydrothermal method, progressively modified by an alkylammonium and thoroughly characterized by elemental, thermal, and X‐ray diffraction (XRD) analysis. Pristine and modified clays were introduced in maleic anhydride‐modified ethylene‐co‐propylene‐co‐diene monomer matrix. XRD and transmission electron microscopy investigations showed microcomposite as well as intercalated or exfoliated nanocomposites morphologies depending on the organic content of the clay. The inhibitor character of the pristine clay on peroxides as crosslinking agent for rubbers was then demonstrated and overcome by using electron beam irradiation for specimens containing unmodified clay. Dynamic mechanical analyses and swelling measurements showed that it is possible to obtain the same degree of crosslinking of the polymer matrix by electron beam irradiation of the composites based on pristine clay specimens and conventional peroxide curing of modified‐clay‐based ones. Finally, flame‐retardant properties of different clays‐based composites showed a direct dependence on the degree of exfoliation. It was observed that the better the exfoliation, the higher is the flame retardancy. POLYM. COMPOS., 38:966–973, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
An investigation on the effect of filler geometry/shape on the dynamic mechanical properties of polymers was conducted. The viscoelastic damping matrix chosen was SBR and the fillers chosen were graphite, aramid, and carbon short fibers. The study was conducted by taking a control base compound of 20 parts N330 carbon black‐filled styrene butadiene rubber (SBR). Dynamic mechanical thermal analyzer was used to investigate the viscoelastic damping of the rubber composites at low dynamic strain levels. Compressive hysterisis at moderate degree of strain were evaluated for all the composite samples to probe into their high strain static damping properties. SEM was used to investigate the matrix‐fiber interaction and distribution of the fillers. Investigations demonstrated that the matrix‐filler interface plays a major role in energy dissipation. The amount of interface was analyzed by considering the half height width of tan δ peak. Fiber matrix interaction parameter was calculated from the tan δmax values for matrix and composite. It was observed the interaction parameter and the low strain tensile stress values register similar trend. Aramid short fibers were most effective in more energy dissipation than other fillers under consideration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
This investigation describes two methods to obtain rubber composites based on natural rubber (NR) and organophilic layered silicates. In order to improve the exfoliation and compatibilization of the organoclays with the rubber matrix, a new approach which involves swelling of the organoclays with an elastomer solution prior to compounding has been used. The effect of the addition during swelling of a coupling agent, namely bis(trietoxysilylpropyl)tetrasulfan (TESPT), on the behaviour of the composites was also investigated. The results show that a low amount of organoclay (10 phr) significantly improves the properties of natural rubber. This suggests a strong rubber–organoclay interaction which is attributed to a high degree of rubber intercalation into the nanosilicate galleries, as was confirmed from X‐ray diffraction. In addition, an ulterior improvement in the properties of the nanocomposites prepared by solution mixing is clearly observed, due to the better filler–rubber compatibility. An even further increase in the properties is observed by treating the silicate with a silane coupling agent. The silane functional groups modify the clay surface, thus reducing the surface energy, and consequently improving the compatibility with the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
The oligomeric poly(styrene‐acrylamide‐vinylbenzylchloride) (P(St‐AM‐VBC)) quaternary ammonium salts have been prepared from the reactions of trimethylamine with the corresponding P(St‐AM‐VBC)s, which were synthesized by free‐radical polymerization of a mixture of styrene, acrylamide, and vinylbenzylchloride. Then the swelling tunable oligomeric poly(styrene‐co‐acrylamide) modified clays have been prepared through cation exchange of the sodium ions in the clay with the corresponding P(St‐AM‐VBC) quaternary ammonium salts. The P(St‐AM‐VBC) and its modified clays have been characterized by infrared spectra (IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The solvent‐swelling capacity of poly(styrene‐co‐acrylamide) modified clays have also been tested, and the experimental results have indicated that these clays are novel swelling tunable organic clays. XRD and TEM studies have shown that these novel swelling tunable clays are well‐intercalated or exfoliated. Furthermore, TGA analysis shows that these polymerically modified clays have high thermal stability for nanocomposites by melt blending. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The mechanical and thermophysical properties of TiO2‐filled chlorobutyl rubber composites were investigated. These materials exhibited enhanced mechanical properties such as increased modulus, tensile strength, and hardness. The morphology of filler dispersion in the matrix was analyzed by scanning electron microscopy and atomic force microscopy. Moreover, the effect of TiO2 content on the molecular transport of solvents was examined by means of degree of swelling, volume fraction of rubber, penetration rate of solvent, mean diffusion coefficient, etc. A periodic method was used to estimate the thermophysical behavior of samples. It was shown that the thermal conductivity and diffusivity of composites increase with increasing of TiO2 filler content. Finally, the utilization of the material as effective chemical protective clothing against volatile organic chemicals was analyzed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号