首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adding conductive carbon fillers to insulating resins increases the composite electrical and thermal conductivity. Often, enough of a single type of carbon filler is added to achieve the desired conductivity while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid‐crystal polymer. The rheological properties of the resulting single‐filler composites were measured. In addition, the rheological properties of composites containing combinations of different carbon fillers were studied via a factorial design. In all cases, the viscosity increased with increasing filler volume fraction and followed a shear‐thinning power‐law model. The factorial design results indicated that each of the single fillers and all the filler combinations caused a statistically significant increase in the composite viscosity when compared at a shear rate of 500 s?1 or at a stress of 105 Pa. For composites containing synthetic graphite particles and/or carbon fiber, the viscosity variation with the volume fraction of carbon followed a modified Maron–Pierce equation. When compared at a constant volume fraction of carbon, composites containing carbon black showed viscosity enhancement above and beyond that shown by the other composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
One emerging market for thermally and electrically conductive resins is bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases the composite thermal and electrical conductivity. These fillers have an effect on the composite tensile and flexural properties, which are also important for bipolar plates. In this study, various amounts of three different types of carbon (carbon black, synthetic graphite particles, and carbon fibers) were added to Vectra A950RX liquid‐crystal polymer. In addition, composites containing combinations of fillers were also investigated via a factorial design. The tensile and flexural properties of the resulting composites were then measured. The objective of this study was to determine the effects and interactions of each filler with respect to the tensile and flexural properties. The addition of carbon black caused the tensile and flexural properties to decrease. Adding synthetic graphite particles caused the tensile and flexural modulus to increase. The addition of carbon fiber caused the tensile and flexural modulus and ultimate flexural strength to increase. In many cases, combining two different fillers caused a statistically significant effect on composite tensile and flexural properties at the 95% confidence level. For example, when 40 wt % synthetic graphite particles and 4 wt % carbon black were combined, the composite ultimate tensile and flexural strength increased more than what would be expected from the individual additive effect of each single filler. It is possible that linkages were formed between the carbon black and synthetic graphite particles that resulted in improved ultimate tensile and flexural strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Electrically conductive resins are needed for bipolar plates used in fuel cells. Currently, the materials for these bipolar plates often contain a single type of graphite powder in a thermosetting resin. In this study, various amounts of two different types of carbon, carbon black and synthetic graphite, were added to a thermoplastic matrix. The resulting single‐filler composites were tested for electrical conductivity, and electrical conductivity models were developed. Two different models, the Mamunya and additive electrical conductivity models, were used for both material systems. It was determined how to modify these models to reduce the number of adjustable parameters. The models agreed very well with experimental data covering a large range of filler volume fractions (from 0 to 12 vol % for the carbon black filled composites and from 0 to 65 vol % for the synthetic graphite filled composites) and electrical conductivities (from 4.6 × 10?17 S/cm for the pure polymer to 0.5 S/cm for the carbon black filled composites and to 12 S/cm for the synthetic graphite filled composites). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3293–3300, 2006  相似文献   

4.
A semirigid and amorphous commercial liquid‐crystalline copolyester (Rodrun) was filled with mica and calcium carbonate (up to 25 wt %) by direct injection molding. The fillers led to decreases in the processability, as observed by torque increases, but maintained the thermal resistance of Rodrun. The effects of the two fillers on the modulus of elasticity, ductility, and tensile strength were the same or very similar. The decrease in the tensile strength (20% for a 10% filler content) was compensated by a generally slight increase in the modulus of elasticity, whatever the filler content was. This balance of properties found in these new liquid‐crystalline‐polymer‐based materials and the important savings that the fillers bring may spread the applications of these materials' matrices. © 2003 Wley Periodicals, Inc. J Appl Polym Sci 88: 998–1003, 2003  相似文献   

5.
Electrically conductive resins may have applications as fuel cell bipolar plates. The current trend in this technology is a thermosetting polymer as the matrix containing high concentrations of various types of fillers. These fillers are carbon based and electrically conductive powders, particles, or fibers. In this study, we utilized two composite formulations of polyacrylonitrile fibers (Fortafil 243 and Panex 30) in a liquid crystal polymer (Vectra A950RX) with increasing concentrations. Electrical conductivity tests were performed and modified Mamunya and additive models were applied to the experimental data. These models fit the entire range of data for each composite tested. Four alternate models were also produced: linear, quadratic, exponential, and geometric, with a restricted range of electrical conductivity data greater than 10?2 S/cm. The exponential and the geometric resulted in the best fits over this restricted data range. These particular models may allow researchers to extrapolate beyond the maximum filler concentrations studied here. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Thermally conductive resins are needed for bipolar plates in fuel cells. Currently, the materials used for these bipolar plates often contain a single type of graphite in a thermosetting resin. In this study, varying amounts of four different types of polyacrylonitrile carbon fillers (Ketjenblack carbon black, Thermocarb synthetic graphite, Fortafil 243 carbon fiber, and Panex 30 carbon fiber) were added to a thermoplastic matrix (Vectra A950RX Liquid Crystal Polymer), with the resulting resins tested for through‐plane and in‐plane thermal conductivity. There are two unique contributions of this work. The first contribution is the use of the Nielsen model for the through‐plane thermal conductivity as a function of the single filler volume fraction. The model fits the data for all composites well. The second contribution is the development of a new, accurate, empirical model to predict the in‐plane thermal conductivity for all resins containing synthetic graphite or carbon fiber. Both of these models will form the basis for the development of new thermal conductivity models for composites with multiple fillers for fuel cell bipolar plate applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
Thermally conductive resins are needed for bipolar plates in fuel cells. Currently, the materials used for these bipolar plates often contain a single type of graphite in a thermosetting resin. In this study, varying amounts of two different types of polyacrylonitrile based carbon fibers, Fortafil 243 and Panex 30, were added to a thermoplastic matrix (Vectra A950RX Liquid Crystal Polymer). The resulting single filler composites were tested for thermal conductivity and a simple exponential thermal conductivity model was developed for the square root of the product of the in‐plane and through‐plane thermal conductivity . The experiments showed that the through‐plane thermal conductivity was similar for composites up to 40 vol % fiber. However, at higher loadings, the Panex 30 samples exhibited higher thermal conductivity. The experiments also showed that the in‐plane thermal conductivity of composites containing Panex 30 was higher than those containing Fortafil 243 for all volume fractions studied. Finally, the model agreed very well with experimental data covering a large range of filler volume fraction (from 0 to 55 vol % for both single filler systems). The model can be used with existing through‐plane thermal conductivity models to predict in‐plane thermal conductivity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5456–5462, 2006  相似文献   

8.
One emerging market for electrically conductive resins is for bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases composite electrical conductivity and viscosity. Current technology often adds as much of a single type of carbon filler as possible to achieve the desired conductivity, while still allowing the carbon‐filled thermoplastic matrix material to be extruded and molded into a bipolar plate. In this study, varying amounts of two different types of carbon, one carbon black and one synthetic graphite, were added to Vectra A950RX liquid crystal polymer. The resulting single filler composites were then tested for electrical conductivity and rheological properties. The electrical conductivity followed that typically seen in polymer composites with a percolation threshold at 4 vol % for carbon black and at 15 vol % for synthetic graphite. Over the range of shear rates studied, the viscosity followed a shear‐thinning power law model with power‐law exponent (n ? 1) = ?0.5 for neat Vectra A950RX and (n ? 1) = ?0.7 for highly filled composite materials. Viscosity increased with increasing filler volume fraction for all shear rates. The viscosity–enhancement effect was more rapid for the composites containing carbon black when compared with those containing synthetic graphite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2680–2688, 2006  相似文献   

9.
There is an emerging market for conductive resins for use in fuel cell bipolar plates. This research focuses on developing a finite element model of a capillary rheometer. Comsol Multiphysics 3.2b was used to model the flow of a remeltable thermoplastic matrix material, Vectra A950RX Liquid Crystal Polymer, with varying amounts of either a carbon black or synthetic graphite filler, to obtain the velocity profile and pressure drop of these composites within the capillary. Previous experimental results have shown that the molten composites obey a shear‐thinning power law behavior. When comparing the model predicted pressure drops from the model with the experimental data, very good agreement was obtained. This signifies that the rheological behavior of the composites can be described by a power law relationship, using parameters specific to each composite. When comparing the modeled velocity profile with the theoretical profile, it was found for all composite formulations that the velocity becomes fully developed within a length of 0.05 times the diameter of the tube, independent of the power law parameters n and m. This work is a necessary first step in developing 2D or 3D mold filling simulations for fuel cell bipolar plate applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
We developed an energy model derived from the first principle for multilayer configurations to enhance our understanding of the interfacial property between two polymers under shear deformation. We carried out specific experiments satisfying the boundary and loading conditions of the model to obtain the energy dissipation factor (β), which characterized and quantified the interfacial property. Two polymer pairs, the miscible system polystyrene (PS)/high‐impact polystyrene (HIPS) and the immiscible system polycarbonate (PC)/liquid‐crystal polymer (LCP), were investigated. As expected, β was zero for PS/HIPS, reflecting the strong interaction at the PS/HIPS interface. For PC/LCP, the value of β could be significant, and its behavior was complex; it reflected the thermal sensitivity and thermal history effect of the PC/LCP interface. A positive value of β also indicated the possibility of slip at the interface and provided an explanation for the negative deviation from the rule of mixture. This complex behavior of the interface was attributed to the changes in the phases and microstructure of LCPs and, therefore, the LCP/PC interface as thermal cycling was carried out in the melting/nematic range of LCPs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 258–269, 2003  相似文献   

11.
Poly(4‐vinylpyridine)s (P4VPs) fully and partially quaternized with dialkyloxyterphenyl groups were synthesized and characterized. These new polymers developed both liquid‐crystalline (LC) properties and a light emission (luminescence) in the blue region. The mesomorphic behavior of the polymers was initially characterized by differential scanning calorimetry and polarizing optical microscopy and was further corroborated by X‐ray diffraction analyses. The X‐ray diffraction patterns showed in the low‐angles region several equidistant diffraction peaks (d001, d002, d003, …) and in the wide‐angles region a broad peak typical of nonordered mesophases. From d001 and the length of the monomers, we deduced that the molecular arrangement in the mesophase corresponded to a double‐layered stacking of molecules with mesogens tilted with respect to the smectic plane and the backbones sandwiched between. In this arrangement, the different parts of mesogens are segregated from one another in layered domains. The longer smectic periods observed for copolymers indicated that the nonsubstituted pyridine cycles were sandwiched between two smectic layers. The emission spectra of these polymers were characterized by a broad signal centered at 365 nm. The combination of LC properties with luminescence in the polymers is interesting for the preparation of thin films with aligned emitters, particularly for linearly polarized light emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Homo‐ and copolyesters of derivatives of hydroxyazobenzenecarboxylic acid with various percentage compositions of m‐hydroxy benzoic acid (m‐HBA)/p‐hydroxy benzoic acid (p‐HBA) were synthesized and characterized. The properties of the copolyesters were compared with their corresponding homopolyesters. The solubility of the copolyesters with m‐HBA increased because of the decrease in the rigidity of the polymer chain attributed to the introduction of nonlinear molecules, whereas the solubilities of the copolyesters with p‐HBA changed only slightly compared to their corresponding homopolyesters. Thermal and phase behaviors of the polymers were characterized by TGA, DSC, and polarizing light microscopy (PLM) methods. Above 30% composition of m‐HBA, the thermal stability of the copolyesters with m‐HBA decreased compared to that of the homopolyester P1, whereas the copolyesters of p‐HBA possessed greater thermal stability than that of their homopolyesters at all compositions. The introduction of the long, flexible alkyl side chain laterally to the backbone of the azobenzene moiety drastically reduced the transition temperature of the homopolyester, but without destroying the mesophase. The effect of copolymerization on liquid‐crystalline behavior and transition temperature of the copolymers was discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1976‐1982, 2004  相似文献   

13.
In this study, the prime factor determining the size, shape, and distribution of liquid‐crystalline polymer (LCP) was the viscosity ratio at the processing conditions. The fiber‐forming capacity of the LCP depended on the viscosity of the ethylene–propylene–diene monomer rubber (EPDM). With increasing LCP content, the tensile and tear strengths did not increase, perhaps because of incompatibility between the EPDM and LCP. The hardness increased because of the hard mesogenic groups in the LCP. The percentage swelling decreased as the LCP content increased. With increasing LCP content, processability became easier because of a lower melt viscosity. The scorch time increased at higher LCP levels. A higher percentage crystallinity was observed with increasing LCP content. Scanning electron microscopy clearly showed the fiber phase formation, which was two‐dimensionally isotropic in nature, confirming fiber formation even in a shear field. The addition of LCP improved the thermal stability. The onset degradation temperatures shifted to higher values with increasing LCP content. Dynamic mechanical thermal analysis revealed that with the addition of LCP, the mechanical damping increased at its lower level. High‐temperature processing increased the effective amorphous zone. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 711–718, 2004  相似文献   

14.
The liquid‐crystalline (LC) monomer 4‐allyoxybenzoyloxy‐4′‐buthylbenzoyloxy‐p‐phenyl (M1), whose LC phase appeared at lower temperatures, from 137 to 227°C, and the modified mesogenic monomer 4‐allyoxybenzoyloxy‐4′‐methyloxybenzoyloxy‐p‐biphenyl (M2), whose LC phase appeared at higher temperatures, from 185 to 312°C, were prepared. A series of side‐chain LC polysiloxanes containing M1 and M2 were prepared by graft copolymerization. Their LC properties were characterized by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. The results show that the introduction of the modified mesogenic monomer M2 into the polymeric structure caused an additional increase in the clearing point (isotropic transition temperature) of the corresponding polysiloxanes, compared with unmodified polysiloxanes, but did not significantly affect the glass‐transition temperature. Moreover, the modified polysiloxanes exhibited nematic phases as the unmodified polymer did. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1196–1201, 2005  相似文献   

15.
Novel aromatic poly(ether ketones) containing bulky lateral groups were synthesized via nucleophilic substitution reactions of 4,4′‐biphenol and (4‐chloro‐3‐trifluoromethyl)phenylhydroquinone (CF‐PH) with 1,4‐bis(p‐fluorobenzoyl)benzene. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized light microscopy observation. Thermotropic liquid‐crystalline behavior was observed in the copolymers containing 40, 50, 60, and 70 mol % CF‐PH. The crystalline–liquid‐crystalline transition [melting temperature (Tm)] and the liquid‐crystalline–isotropic phase transition appeared in the DSC thermograms, whereas the biphenol‐based homopolymer had only a melting transition. The novel poly(aryl ether ketones) had glass‐transition temperatures that ranged from 143 to 151°C and lower Tm's that ranged from 279 to 291°C, due to the copolymerization. The polymers showed high thermal stability, and some exhibited a large range in mesophase stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1347–1350, 2003  相似文献   

16.
Adding conductive carbon fillers to insulating thermoplastic resins increases composite electrical conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity and still allow the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon nanotubes) were added to polypropylene resin. The resulting single‐filler composites were tested for electrical resistivity (1/electrical conductivity). The effects of single fillers and combinations of the different carbon fillers were studied via a factorial design. The percolation threshold was 1.4 vol % for the composites containing only carbon black, 2.1 vol % for those containing only carbon nanotubes, and 13 vol % for those containing only synthetic graphite particles. The factorial results indicate that the composites containing only single fillers (synthetic graphite followed closely by carbon nanotubes and then carbon black) caused a statistically significant decrease in composite electrical resistivity. All of the composites containing combinations of different fillers had a statistically significant effect that increased the electrical resistivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A developmental thermotropic liquid‐crystalline polymer (TLCP) made by Eastman (trade name LN001) was used for barrier property studies. This material is a highly aromatic TLCP with a Tm of 332°C. A permeability study was carried out to determine the chemical resistance of the TLCP. The permeability of methanol and toluene through a membrane of the TLCP was studied using a two‐part cell and a gas chromatograph to monitor the flux. The membranes of the TLCP and LDPE (as control) were made by compression molding. Both solvents had higher permeability through LDPE than TLCP and that of toluene was higher than that of methanol. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2457–2463, 2003  相似文献   

18.
A series of liquid‐crystalline (LC) polysiloxanes were synthesized by two different cholesteric monomers, cholest‐5‐en‐3‐ol(3β)‐10‐undecenoate and cholesteryloxycarbonylmethyl 4‐allyloxybenzoate. The chemical structures and LC properties of the monomers and polymers were characterized by various experimental techniques, including Fourier transform infrared spectroscopy, 1H‐NMR, elemental analysis, differential scanning calorimetry, and polarized optical microscopy. The specific rotation absolute values increased with increasing rigid spacers between the main chain and the mesogens. All of the polymers exhibited thermotropic LC properties and revealed cholesteric phases with very wide mesophase temperature ranges. With a reduction in the soft‐space groups in the series of polymers, the glass‐transition temperature and the isotropic temperature increased slightly on heating cycles. Reflection spectra of the cholesteric mesophase of the series of polymers showed that the reflected wavelength shifted to short wavelengths with decreasing soft‐space groups in the polymers systems, which suggested that the helical pitch became shorter with increasing rigid‐space groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

20.
A potential application for conductive resins is in bipolar plates for use in fuel cells. The addition of carbon filler can increase the electrical and thermal conductivities of the polymer matrix but will also have an effect on the tensile and flexural properties, important for bipolar plates. In this research, three different types of carbon (carbon black, synthetic graphite, and carbon nanotubes) were added to polypropylene and the effects of these single fillers on the flexural and tensile properties were measured. All three carbon fillers caused an increase in the tensile and flexural modulus of the composite. The ultimate tensile and flexural strengths decreased with the addition of carbon black and synthetic graphite, but increased for carbon nanotubes/polypropylene composites due to the difference in the aspect ratio of this filler compared to carbon black and synthetic graphite. Finally, it was found that the Nielsen model gave the best prediction of the tensile modulus for the polypropylene based composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号