首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
To increase the thermal conductivity of polymer/ceramic composites, aluminum nitride (AlN) granules were added as a ceramic filler. Granules, sintered at 1850°C for 24 h, showed a very high conductivity of 266±26 W (m·°C)−1, as measured by a thermal microscope equipped with thermoreflectant and periodic heating techniques. This conductivity exceeds 80% of the theoretical value of AlN. Ceramic fillers consisting of the obtained AlN granules and commercially available hexagonal boron nitride particles (h-BN) powder plus polyimide resins were mixed and then molded at 100 MPa and 420°C in a vacuum. The resultant composite showed a high conductivity of 9.3 W (m·°C)−1. This study demonstrates that a high-thermal-conductivity filler effectively enhances the conductivity of polymer/ceramic composites.  相似文献   

2.
Flexible materials with excellent radiation shielding and flexibility are essential to the personal protective equipments (PPEs) for protecting workers from nuclear radiations. However, it is an enormous challenge to obtain the desired materials since high loading filler in polymer nanocomposites usually promotes radiation shielding while restrains its flexibility. Here, a facile “thiol-ene click” means is applied to chemically bond high loading boron nitride (BN) nanoparticles with silicone rubber (SR) in SR/BN nanocomposites for thermal neutron shielding. Uniform dispersion of BN nanoparticles and good compatibility of interfaces in the nanocomposites with high loading filler lead to increased flexibility instead of decrease. In particular, the nanocomposite with 40 wt% BN displays 911% of elongation at break that is about 50% enhancement to that of neat SR. Furthermore, higher loading BN in the nanocomposites means better thermal neutron shielding. Namely, enhanced thermal neutron shielding and flexibility is achieved at SR/BN nanocomposite with 40 wt% BN. The present work provides a facile strategy towards superior integrated performance of flexible materials for radiation shielding, such as wearable devices.  相似文献   

3.
The effects of filler particle size of poly(vinyl chloride)/chicken eggshell powder (PVC/ESP) composites on the processing, tensile properties, morphology and thermal degradation were investigated. The mixing of composites was done using Rheomix internal mixer. The processing torque of PVC/ESP composite at a particle of 0.2 μm exhibits lower processing torque compared to that at a particle size of 7 μm due to the dispersive resistance from larger ESP filler particles. Good interfacial adhesion exists between the filler and matrix in composites prepared via a filler particle size of 0.2 μm, which has improved the tensile strength and modulus of PVC/ESP composite compared to a filler particle size of 7 μm as justified from FESEM images on the tensile fracture surface of the composites. Thermogravimetric analysis results show that the filler particle size of 0.2 μm composite exhibits higher thermal stability compared to the filler particle size of 7 μm composite.  相似文献   

4.
To improve mechanical and thermal properties of a hexagonal boron nitride platelet filled polymer composites, maleic anhydride was studied as a coupling agent and compatibilizer. Injection molded blends of acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and maleic anhydride with boron nitride filler were tested for thermal conductivity and impact strength to determine whether adding maleic anhydride improved interfacial interactions between matrix and filler and between the polymers. Adding both HDPE and maleic anhydride to ABS as the matrix of the composite resulted in a 40% improvement in impact strength without a decrease in thermal conductivity when compared to an ABS matrix. The best combination of thermal conductivity and impact strength was using pure HDPE as the matrix material. The effective medium theory model is used to help explain how strong filler alignment helps achieve high thermal conductivity, greater than 5 W/m K for 60 wt % boron nitride. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48661.  相似文献   

5.
Composite powder coatings consisting of polyetheretherketone (PEEK), hexagonal boron nitride (hBN), and tungsten carbide cobalt chromium (WC-CoCr) particles were prepared by mechanical grinding and applied on steel substrates by thermal fusion of the thermoplastic polymer. The coatings contained about 20–60 vol% of hBN and WC-CoCr, and were designed to maximize modulus and hardness and minimize friction coefficient and wear rate. The mechanical and tribological properties of single- and double-layered coatings were characterized using nanoindentation and sliding friction and wear measurements. When the hBN concentration was about 30 vol%, the PEEK–hBN composite modulus was lower than that of neat PEEK, which is attributed to the disruption of PEEK crystallization by the filler particles. Upon the inclusion of WC-CoCr particles, the composite's modulus, and hardness showed a substantial increase beyond PEEK values. Elastic moduli of the mixed-filler systems were closer to the Reuss bound than the Voigt bound and could be correlated well with the coating composition using volume-fraction-weighted powers of component properties. Fitted values of the exponent (called the microstructural coefficient) were consistent with the expected continuity and connectivity of the composite's hard and soft phases. Viscoplastic energy dissipation increased with an increase in the polymer-filler interfacial area but decreased with the soft-phase volume fraction. The plasticity index was found to increase logarithmically with the coating modulus. The specific wear rate increased sharply beyond a composition-dependent critical value of the plasticity index. Mechanical polishing of the coating surfaces using abrasive slurries lowered the friction coefficient but increased the wear rate.  相似文献   

6.
将氮化硼粉末负载于碳纤维织物上,用扫描电镜和紫外分光光度计观察和测试了氮化硼/碳纤维复合织物的表面形貌和紫外漫反射性能。结果显示:有大量氮化硼负载于碳纤维织物上;在250~600 nm波长范围,氮化硼/碳纤维复合织物的紫外漫反射性能比纯碳纤维织物的更好。用网络分析仪测试了氮化硼/碳纤维复合织物的电磁屏蔽性能,发现负载了氮化硼的碳纤维织物的电磁屏蔽性能略弱于纯碳纤维织物。  相似文献   

7.
To improve the powder processing behavior of ultrahigh-molecular-weight polyethylene, a conductive iron filler was distributed within the polymer in a segregated network. The filler level was kept at a minimum of 10 volume percent, which was sufficient to coat completely all the polymer particle surfaces. This filler level was low enough to avoid modifying the resin properties to a significant extent. Compaction of these filled samples showed a slower densification, under pressure, similar level of final densification at 80% densification parameter, and a doubling of plateau pressure value to 200 MPa in comparison with the unfilled polymer. The filler was found to reduce drastically the postcompaction relaxation time from 24 h to 6 h. The magnitude of the axial (compaction direction) relaxation was unchanged, but the radial relaxation was one quarter of that for the unfilled polymer. Sintering behavior showed improved densification because of lower dimensional changes during sintering resulting in 80% relative sintered density, higher than the 75% percent value for the unfilled polymer, but yielded a 20% lower sintered strength, An alternative process of rapid sintering by induction heating was explored, its feasibility demonstrated, and a recommendation is made to make powder processing of this polymer commercially attractive.  相似文献   

8.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) can be conspicuously enhanced at low conductive filler contents with the formation of segregated structure in the conductive polymer composites (CPCs). Nevertheless, poor interface adhesion of segregated composites results in poor mechanical properties due to the selective distribution of conductive fillers. In this work, a flexible approach was applied to fabricate the poly(phenylene sulfide)/poly(arylene sulfide sulfone)/graphene nanoplates (GNPs) composite with a unique double percolated structure. This composite exhibits an outstanding EMI SE of 38.8 dB with only 3 wt % GNPs, which is comparable to that of the conventional segregated structure counterpart. What is more, the tensile strength and Young's modulus of double percolated composites with 3 wt % GNPs are remarkably improved by ~892 and ~274% compared to conventional segregated structure, achieving 37.7 and 1788.3 MPa, respectively. This work provides a valuable method for producing CPCs with high EMI shielding performances and outstanding mechanical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48709.  相似文献   

9.
UHMWPE/LLDPE/BN复合塑料导热性能研究   总被引:1,自引:0,他引:1  
将氮化硼(BN)粒子和超高分子量聚乙烯/线性低密度聚乙烯(UHMWPE/LLDPE)分别用熔融辊炼法和粉末混合法制备导热聚乙烯塑料。研究了制备方式、填料含量及偶联剂对填料分散状态及体系热导率、热阻的影响。研究结果表明,粉末法制备的塑料由于BN的高分散效果使得体系的导热性能明显高于熔融辊炼法制备的体系,热导率随填料含量而增加,偶联剂处理有利于提高塑料的热导率。在UHMWPE/LLDPE/BN中添加少量氧化铝短纤维有助于提高体系的力学强度、韧性及热导率。  相似文献   

10.
New applications of both pea hull fiber (PHF) and PHF‐derived nanowhiskers (PHFNW), isolated from PHF by acid‐hydrolysis, as fillers in starch‐based biocomposite films were explored in this work. Two series of films were prepared by blending pea starch (PS), respectively, with PHF and PHFNW. The effects of PHF and PHFNW as filler on the structure and properties of the composite films were comparatively investigated by observation of morphology and analysis of thermal, optical, and mechanical properties. The results revealed that the PS/PHFNW nanocomposite films exhibited improved physical properties over both the neat PS film and PS/PHF microcomposite films. The light transmittance at 800 nm, tensile strength, elongation at break, and Young's modulus were 56.0%, 4.1 MPa (Megapascal), 30.1%, 40.3 MPa, respectively, for the PS film without filler; 58.0%, 7.6 MPa, 41.8%, and 415.2 MPa for the PS/PHFNW film containing 10 wt% filler; and 37.2%, 2.8 MPa, 17.0%, and 29.8 MPa for the PS/PHF film containing 10 wt% filler. The improvement to the properties of PS/PHFNW nanocomposite films may be attributed to the nanometer size effect of PHFNW, which resulted in the homogeneous dispersion of PHFNW within the PS, and the strong interactions between the matrix and the nanoscale filler. POLYM. ENG. SCI., 2009. Published by the Society of Plastics Engineers  相似文献   

11.
Plant‐derived kenaf fiber (KF)‐reinforced poly(ε‐caprolactone) (PCL) biocomposites were successfully fabricated by the melt mixing technique. The crystallization behavior, morphology, and mechanical and dynamic mechanical properties of PCL/KF composites with various KF weight contents were investigated. The crystallization rate, tensile and storage moduli significantly improved as compared to the virgin polymer. The half times of PCL/KF composite (20 wt % fiber content) in isothermal crystallization at 40°C and 45°C reduced to 31.6% and 42.0% of the neat PCL, respectively. Moreover, the tensile and storage modulus of the composite are improved by 146% and 223%, respectively, by the reinforcement with 30% KF. The morphology evaluated by SEM indicates good dispersion and adhesion between KF and PCL. Overall, these findings reveal that KF can be a potential reinforcement for the biodegradable polymer composites owing to its good ability to improve the mechanical properties as well as crystallization rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Taskin B. Karim 《Polymer》2011,52(26):6134-6145
In the present work, we report results from particle embedment experiments which give the surface modulus of neat epoxy, epoxy/POSS composites and polystyrene films. The embedment of the particles was determined from atomic force microscope measurements and the modulus estimated from the Johnson, Kendall and Roberts (JKR) model. The work of adhesion between submicron particle and the polymer surface was used as the driving force for particle embedment. For neat epoxy, epoxy/POSS composite systems and PS films, the surface modulus value was found softer than the macroscopic glassy modulus. The maximum embedment depth obtained for all surfaces was low enough so that it did not cause plastic deformation on the surface. The maximum stress values on all surfaces induced by the particle embedment were estimated to verify the expected response to be close to the linear regime.  相似文献   

13.
At first, the impact of selected spherically structured nanofillers made of different polar materials (carbon, silicon carbide, surface‐modified silica, 2 wt % each) on mechanical properties of monomer cast polyamide 6 (MCPA6) was examined. Only the low‐polar carbon‐based nanofiller showed an average particle size below 100 nm in the liquid phase before polymerization was initiated. With regard to neat MCPA6, mechanical properties of the composite loaded with the carbon nanoparticles like tensile strength, Young's modulus, and heat distortion temperature could be improved by 6.4%, 13.5%, and 27.5%, respectively. The efficiency of carbon as filler material for MCPA6 was also shown for carbon short‐cut fibers. A fiber content of 15% improved tensile strength from 78 to 93 MPa (19%) and Young's modulus could be doubled from 2660 MPa to nearly 5300 MPa. Regardless of the improved mechanical properties, the composites showed reduced degrees of crystallinity. Therefore, electron beam irradiation was applied to crosslink the polymer chains as an alternative to improve material properties. Crosslinking was supported by the application of a curing agent (CA). Two strategies for crosslinking experiments were tested: (1) Irradiation of CA‐containing neat MCPA6 to find the most effective dose and subsequent treatment of the composites under this special condition; (2) Optimization of the properties by irradiation of the composites itself at graduated dose values. The second way was more convenient and showed, with regard to the composites without CA, improvements of tensile strength and Young's modulus of 6% each. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
In this work, a simple and novel method was applied to prepare polymer composites by taking the advantage of melt flow shear force driving orientation of the fillers. By using this method, hexagonal boron nitride/polyethylene (hBN/PE) and hexagonal boron nitride/carbon fibers/polyethylene (hBN/CF/PE) composites were fabricated to be possessed of high thermal conductivity and mechanical properties. A high thermal conductivity of 3.11 W/mK was realized in the composite containing 35 wt% hBN and 5 wt% CF, which was over 1,200% higher than that of unfilled PE matrix. Under this component, the compressive strength and modulus of hBN/CF/PE composite were determined to be 30.1 and 870.9 MPa, respectively, which were far higher than that of unfilled PE accordingly. The bending performance was also somewhat enhanced. Meanwhile, the bulk resistivity of the composite material reached 2.55 × 1011 Ω·cm, which was basically the same as that of pure PE. The novel composites with high thermal conductivity, excellent mechanical properties, and controllable electrical insulation could be a potential thermal management material for electrical and electronics industries.  相似文献   

15.
用废弃环氧模塑料粉作为填料,采用模压成型的方法制备了聚氯乙烯(PVC)/废弃环氧模塑料复合材料,研究了废弃环氧模塑料粉的组成和性质及其与PVC的界面黏结情况,分别考察了温度和废弃环氧模塑料粉含量对复合材料力学性能和动态力学性能的影响。结果表明,废弃环氧模塑料粉具有一定的活性,能与极性树脂PVC发生作用而产生界面接枝;在模压温度为200 ℃,废弃环氧模塑料粉含量为60 %(质量分数,下同)时,复合材料的拉伸强度为32.13 MPa,弯曲强度和冲击强度分别为60.70 MPa和4.68 kJ/m2,基本可满足相关产品的要求;随着废弃环氧模塑料粉含量的增加,复合材料的储能模量提高,损耗峰向高温方向移动,且损耗峰形先变宽后变窄。  相似文献   

16.
R. K. Gautam  K. K. Kar 《Fuel Cells》2016,16(2):179-192
The most essential and costly component of polymer electrolyte membrane fuel cells is the bipolar plate. The production of suitable composite bipolar plates for polymer electrolyte membrane fuel cell with good mechanical properties and high electrical conductivity is scientifically and technically very challenging. This paper reports the development of composite bipolar plates using exfoliated graphite, carbon black, and graphite powder in resole‐typed phenol formaldehyde. The exfoliated graphite with maximum exfoliated volume of 570 ± 10 mL g−1 used in this study was prepared by microwave irradiation of chemically intercalated natural flake graphite in a few minutes. The composite plates were prepared by varying exfoliated graphite content from 10 to 35 wt.% in phenolic resin along with fixed weight percentage of carbon black (5 wt.%) and graphite powder (3 wt.%) by compression molding. The composite plates with filler weight percentage of 35/5/3/exfoliated graphite/carbon black/graphite powder offer in‐plane and trough‐plane electrical conductivities of 374.42 and 97.32 S cm−1, bulk density 1.58 g cm−3, compressive strength 70.43 MPa, flexural strength 61.82 MPa, storage modulus 10.25 GPa, microhardness 73.23 HV and water absorption 0.22%. Further, I–V characteristics notify that exfoliated graphite/carbon black/graphite powder/resin composite bipolar plates in unit fuel cell shows better cell performance compared exfoliated graphite/resin composite bipolar plates. The composite plates own desired mechanical properties with low bulk density, high electrical conductivity, and good thermal stability as per the U.S. department of energy targets at low filler concentration and can be used as bipolar plates for proton exchange membrane fuel cells.  相似文献   

17.
Mixtures of two grades of boron nitride (BN) powder differing in their crystallinity were hot-pressed in the presence of copper vapor. Two phenomena contributing to the bulk orientation have been recognized: the copper-activated growth of microcrystalline BN grains, and the mechanical aligning of crystalline BN grains. The orientation of boron nitride grains varied widely, and a nearly isotropic material was prepared from a mixture containing 90 wt% microcrystalline powder. The relative intensity of the (100) diffraction line in the isotropic material was 50% higher than that in the standard BN powder. The flexural strength of a ceramic hot-pressed from a composition containing 60 wt% microcrystalline powder reached 160 MPa. The thermal conductivity and Young's modulus showed a strong dependence on the grain orientation, being substantially higher along the BN layers than across them; the modulus, in addition, was negatively influenced by grain boundaries.  相似文献   

18.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

19.
This work was designed to study the effects of inorganic calcite powder on structurally different copolymer [poly(propylene‐co‐ethylene)] and terpolymer [poly (propylene‐co‐ethylene‐co‐1‐butene)] matrices and the possibility of making a suitable porous composite film. The yield stress of the composites did not improve, but the modulus increased gradually with the filler loading. The theoretical and experimental modulus and yield stress of the composites provided evidence of filler and polymer adhesion behavior. The impact strength showed little enhancement up to a 20 wt % loading for the poly(propylene‐co‐ethylene‐co‐1‐butene) system. The number‐average, weight‐average, and z‐average air‐hole diameters were compared with respect to the draw ratio as well as the calcite loading. The morphology of a micromechanically deformed composite, studied with an image analyzer, revealed that the aspect ratio and area of the air holes increased linearly as a function of the draw ratio, but the change in the aspect ratio upon filler loading was not remarkable. A suitable loading of a filler up to 30 wt % was good for controlling the porosity in the composite films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号