首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用水热合成法制备了La掺杂BiPO_4纳米粉末,使用该光催化剂在紫外光下对亚甲基蓝质量浓度为7.5 mg/L的模拟废水进行了光催化降解试验。考察了催化剂用量、溶液p H、无机阴离子和催化剂循环使用次数对光催化降解效果的影响。结果表明:在pH=7,光催化剂用量为1.0 g/L的条件下,用紫外杀菌灯照射90 min,La掺杂BiPO_4对亚甲基蓝的降解率可达95%;SO42-、PO43-的存在对光催化降解具有抑制作用;该催化剂循环使用4次仍具有良好的光催化性能,且稳定性较好。  相似文献   

2.
采用浸渍法将α-八异戊氧基酞菁钴负载到SBA分子筛上制备了α-PcCo/SBA-15光催化剂。通过紫外、红外光谱和热重分析对产物进行了表征。在室温条件下,研究了催化剂用量和H2O2浓度对亚甲基蓝光催化降解效果的影响,并讨论了催化剂的重复使用情况。当催化剂用量为0.7 g/L,H2O2浓度为7 mmol/L时,6 mg/L亚甲基蓝在80 min的降解率达到了98.9%。催化剂重复使用3次后,降解率仍可以达到90.7%。催化反应符合一级反应动力学方程,速率常数为0.051 min-1。  相似文献   

3.
以3-硝基邻苯二甲腈为原料合成了α-四(3-羧基苯氧基)酞菁钴,利用IR、UV-Vis、LC-MS和C H N元素分析对催化剂进行了表征。在室温条件下,研究了催化剂用量和H2O2浓度对亚甲基蓝降解效果的影响。当催化剂用量为0.6 g/L、H2O2浓度为6mmol/L时,80 min后亚甲基蓝的脱色率均可达98.7%。脱色过程符合一级动力学特征,速率常数k=0.039 min-1。重复试验3次,脱色效果可达85%。  相似文献   

4.
制备了异相Fenton催化剂铁改性膨润土(Fe-B),并用于亚甲基蓝(MB)的Fenton氧化降解。考察了制备条件对催化剂性能的影响,采用FTIR、XRD、SEM和EDS对产品进行表征。结果表明,在Fe3+的浓度为1.0 mol/L和固液比为1∶10的条件下制得的产品性能最佳。在pH值3~8内,Fe-B具有高效的催化性能。在初始pH值3、H_2O_210 mmol/L、Fe-B 0.4 g/L、反应温度为30℃、反应时间为40 min的条件下,20 mg/L亚甲基蓝溶液的降解率达到95.82%。Fe-B重复使用性能良好,循环使用5次后,仍具有较高的催化活性。  相似文献   

5.
《印染》2015,(6)
以Keggin结构过渡金属取代杂多硅钨酸盐异构体β2-K6[Si W11Ni(H2O)O39]·x H2O为掺杂剂,过二硫酸铵为氧化剂,以10%乙二醇水溶液为反应媒介,制备了掺杂材料β2-Si W11Ni/PANI。采用红外光谱、紫外光谱、X-射线粉末衍射、SEM等多种方法对该光催化剂进行表征,并考察其对亚甲基蓝溶液的光催化降解性能。结果表明:在紫外光照下,亚甲基蓝10 mg/L,p H值8,催化剂250 mg/L时,脱色率可达93.12%。  相似文献   

6.
《印染》2021,(7)
以贝壳粉为载体,采用共沉淀法将铁、钴负载到贝壳粉上,制得Fe-Co/贝壳粉双金属催化剂。通过XRD、SEM测试发现,煅烧后贝壳粉结构被破坏,催化剂表面形成Fe_3O_4和Co_3O_4。Fe-Co/贝壳粉+Na_2S_2O_8协同催化体系对亚甲基蓝具有很好的降解效果,当Fe和Co物质的量比为2∶1,煅烧温度为550℃,pH为3时,催化剂对亚甲基蓝的降解率最高。  相似文献   

7.
采用共沉淀法并在600℃焙烧制备纳米CeO_2光催化剂,利用热重分析、傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、N2吸附-脱附、扫描电子显微镜(SEM)等方法对纳米CeO_2粒子进行了表征,并研究了纳米CeO_2粒子催化剂对亚甲基蓝溶液的光催化降解行为。结果表明,在300 W汞灯照射下,对于初始质量浓度为5.0 mg/L和初始pH=11的亚甲基蓝溶液,加入600℃煅烧的纳米CeO_21.0 g/L,反应60 min,亚甲基蓝降解率可达87.05%。该光催化降解反应表现为一级动力学反应,反应速率服从多相催化动力学方程Langmuir-Hinshelwood方程,光催化剂表面反应速率常数k为0.138 5 mg/(L·min),吸附平衡常数Kdye为0.399 7 L/mg。  相似文献   

8.
TiO2溶胶光催化降解亚甲基蓝   总被引:2,自引:0,他引:2  
以钛酸四正丁酯[Ti(OC4H9)4]为前驱体,乙醇为溶剂,盐酸为催化剂,在20℃制备了有光催化活性的TiO2溶胶.在40 W紫外灯光照条件下,通过对亚甲基蓝的降解试验,研究了溶胶制备条件、溶胶用量、光照时间和亚甲基蓝溶液初始质量浓度与光催化效果的关系.试验结果表明:当Ti(OC4H9)4与H2O量比为1:100,20℃下陈化7 d,制得的TiO2溶胶对0.20g/L亚甲基蓝溶液的降解率达到97.5%,具有较好的光催化性能.  相似文献   

9.
制备了β_2-(TBA)_6[SiW_(11)O_(39)Co(H2O)]·x H2O多酸电荷转移配合物,用IR、UV、XRD等方法进行了表征。以β2-(TBA)6[SiW11O39Co(H2O)]·x H2O作为光催化反应的催化剂,分别催化降解龙胆紫和亚甲基蓝染料溶液。实验结果表明:初始质量浓度为15mg/L的龙胆紫溶液,加入80 mg/Lβ2-(TBA)6[SiW11O39Co(H2O)]·x H2O,pH=5时,在太阳光下照射140 min,脱色率达85.16%;初始质量浓度为15 mg/L的亚甲基蓝溶液,加入160 mg/Lβ2-(TBA)6[SiW11O39Co(H2O)]·x H2O,pH=4时,在太阳光下照射140 min,脱色率达72.77%。  相似文献   

10.
以铁改性膨润土(Fe-B)为异相Fenton催化剂,利用FTIR、XRD、SEM和EDS进行了表征,将该催化剂用于亚甲基蓝的Fenton氧化降解,考察了Fenton反应条件对降解效果的影响。结果表明,与原膨润土相比,Fe-B结构疏松,含铁量明显增加。在循环使用5次时仍有较高的催化活性。在pH=3.0~8.0时,Fe-B具有良好的适应性。对于初始pH为6.0、20 mg/L的亚甲基蓝溶液,异相Fenton反应的最佳条件为:Fe-B和H2O2用量分别为0.6 g/L和10 mmol/L,30℃反应70 min,亚甲基蓝的降解率达到98.23%。  相似文献   

11.
通过浸渍法制备了MCM-41负载铁催化剂Fe-MCM-41,采用XRD、UV-vis光谱、N2吸附-脱附分析和SEM等对Fe-MCM-41进行表征,结果表明,Fe-MCM-41具有载体MCM-41的介孔结构,孔道分布均匀,平均孔径1.88 nm.研究了以Fe-MCM-41为催化剂的类Fenton体系对甲基橙染料快速降解的方法,考察了分子筛中Fe含量、H2O2及甲基橙初始浓度、溶液p H和催化剂用量等条件对染料降解率的影响.当p H=3、H2O2及甲基橙初始浓度分别为30 mmol/L和20 mmol/L、催化剂用量为2 g/L、反应60 min时,甲基橙的降解率可达96.82%.动力学研究表明,采用Fe-MCM-41催化降解甲基橙遵循一级反应动力学模型(R=0.992),对应的速率常数为8.51×10-2min-1.  相似文献   

12.
先以三聚氰胺为前驱体,制备g-C3N4粉末,再采用溶剂热法制备Cu(CF3SO3)2/g-C3N4复合光催化材料。考察Cu(CF3SO3)2/g-C3N4复合光催化材料在可见光下催化降解亚甲基蓝的性能,并对其进行光催化动力学分析。结果表明,制备的Cu(CF3SO3)2/g-C3N4复合样品呈管状结构,对亚甲基蓝的降解过程符合一级动力学方程。其吸附性能远高于g-C3N4,150 min对亚甲基蓝的降解率达到96.6%;在重复使用4次后,对亚甲基蓝的降解率仍然可以保持84.3%。  相似文献   

13.
采用H2O2为氧化剂,自制硅胶负载邻菲罗啉铁(Ⅱ)配合物[Phen-Fe(Ⅱ)]为催化剂,对罗丹明B(Rh B)进行催化氧化降解.研究了催化剂质量比和用量、H2O2用量、反应温度和反应初始p H等因素对降解率的影响,并对Rh B的降解产物进行了初步分析.结果表明,对于20 mg/L Rh B溶液,当Phen-Fe(Ⅱ)催化剂质量比为1∶1,用量为3 g/L,H2O2用量为0.6 g/L,在40℃和初始p H=11.0的条件下降解6 h,其降解率可达70%.研究表明,Phen-Fe(Ⅱ)具有良好的催化效果.  相似文献   

14.
利用浸渍法将金属酞菁1,4,8,11,15,18,22,25-八环戊氧基酞菁铜(α-CyOPcCu)负载到介孔分子筛MCM-41上,得到新型催化剂α-CyOPcCu/MCM-41,利用氮气吸附、红外光谱对催化剂的结构进行表征。研究催化剂用量和H_2O_2浓度对4 mg/L亚甲基蓝溶液降解效果的影响。当催化剂用量为0.6 g/L、H_2O_2浓度为0.6 mmol/L时,90 min后亚甲基蓝的降解率均可达99.6%。降解过程符合一级动力学特征,速率常数k=0.102 9 min~(-1)。该催化剂具有实用价值,循环使用3次降解率仍保持在95%以上。  相似文献   

15.
以Zn(NO3)2·6H2O和SnCl·5H42O为原料,NaOH为沉淀剂,采用水热法制备了ZnSn(OH)6/Zn2SnO4复合材料,样品的组成和带隙能分别采用X射线粉末衍射(XRD)和紫外-可见漫反射能谱(DRS)进行了表征;探讨了水热反应温度和p H对产物成分的影响,得出ZnSn(OH)6/Zn2SnO4复合材料的最佳制备条件:水热反应温度180℃,p H=10;并以亚甲基蓝为降解对象,研究了ZnSn(OH)6/Zn2SnO4复合材料的光催化性能,结果表明,在15 W紫外灯(λ=365 nm)下照射150 min后,亚甲基蓝的降解脱色率可达99.2%.  相似文献   

16.
采用界面聚合法制备了复合催化剂PW_(11)Mn/PANI/SnO_2。应用FTIR、XRD、UV-Vis对合成的复合催化剂进行表征。将染料亚甲基蓝废水作为探针反应,评价复合催化剂PW_(11)Mn/PANI/SnO_2的光催化性能。实验结果表明:在亚甲基蓝溶液质量浓度为5mg/L、pH=10、催化剂PW_(11)Mn/PANI/SnO_2用量为50 mg/L的条件下,降解效果达到最佳,降解率可达94.19%。复合催化剂光降解亚甲基蓝与准一级动力学反应相吻合。  相似文献   

17.
作为一种典型的工业固废,硫铁矿烧渣(Pyc)的资源化利用程度较低,而烧渣中丰富的铁元素赋予了其在铁环境化学方面的应用潜力。通过球磨混合三聚氰胺和硫铁矿烧渣,采用煅烧法制备了不同负载比的g-C3N4/Pyc复合催化材料,在非均相的光芬顿(Fenton)实验中,利用g-C3N4引入光生电子加速Fe3+的还原,进一步探究了催化材料、g-C3N4负载量、H2O2浓度等因素对亚甲基蓝(MB)降解效果的影响。结果表明,在可见光的照射下,使用g-C3N4/Pyc-4作为催化材料,当H2O2浓度为19.70 mmol/L时,60 min即可完全降解20 mg/L的MB。  相似文献   

18.
把自制掺杂TiO2体系整理到织物上,以织物作为催化剂载体对亚甲基蓝溶液进行光催化降解(以高压汞灯为光源),探讨了整理工艺对催化效果的影响.结果表明:1.0 g/L碘掺杂TiO2整理液以及1.3g/L钙掺杂TiO2整理液整理后的织物对亚甲基蓝溶液有很好的光催化降解效果.有效解决了纳米催化剂降解印染废水后催化剂难以回收的问题.  相似文献   

19.
石墨烯由于特殊的结构和性质而具有良好的光催化性能。以亚甲基蓝光催化降解反应为评价体系,研究了亚甲基蓝的初始浓度、石墨烯投加量、溶液pH值等因素对商品石墨烯光催化性能的影响。在单因素试验基础上,采用Design-Expert软件进行试验设计和优化,用Box-Behnken响应面对试验结果进行分析,得到最佳工艺条件为:石墨烯投加量2.68 mg、溶液pH值12、亚甲基蓝溶液初始质量浓度19.34 mg/L,亚甲基蓝的降解率达到100%。  相似文献   

20.
《印染》2017,(22)
石墨烯由于特殊的结构和性质而具有良好的光催化性能。以亚甲基蓝光催化降解反应为评价体系,研究了亚甲基蓝的初始浓度、石墨烯投加量、溶液pH值等因素对商品石墨烯光催化性能的影响。在单因素试验基础上,采用Design-Expert软件进行试验设计和优化,用Box-Behnken响应面对试验结果进行分析,得到最佳工艺条件为:石墨烯投加量2.68 mg、溶液pH值12、亚甲基蓝溶液初始质量浓度19.34 mg/L,亚甲基蓝的降解率达到100%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号