共查询到20条相似文献,搜索用时 0 毫秒
1.
针对往复压缩机振动信号的非平稳和非线性特性,提出了基于LMD多尺度熵与SVM的往复压缩机轴承间隙故障诊断方法。利用具有保形特性的Hermite插值法替代传统LMD中滑动平均法构造均值与包络函数,提高LMD对非平稳信号的分解精度。以改进LMD方法对各状态振动信号进行分解,依据相关性系数选择其中代表故障状态主要信息的PF分量。利用多尺度熵对各PF分量进行定量描述,并以平均类间样本距离对尺度因子进行优选,得出可分性良好的特征向量。使用SVM作为模式分类器,诊断得出了轴承间隙故障类型。同LMD与样本熵以及LMD与近似熵方法所提取特征向量进行对比,结果表明该方法具有更高的识别准确率。 相似文献
2.
《压缩机技术》2015,(4)
往复压缩机是用于压缩和输送气体的机械设备,针对其振动信号特征,提出基于LMD与多尺度排列熵的往复压缩机轴承间隙故障特征提取方法。利用具有保形特性的Hermite插值法替代传统LMD中滑动平均法构造均值与包络函数,提高LMD对非平稳信号的分解精度;以改进的LMD方法分解各状态下的振动信号,依据相关性系数筛选包含故障状态主要信息的PF分量;利用多尺度排列熵对各PF分量进行定量描述,并以平均类间样本距离对尺度因子进行优选,得出可分性良好的特征向量;利用SVM识别轴承间隙故障的类型,以识别准确率为依据,通过与不同方法所提取的特征向量进行对比,验证了方法的有效性。 相似文献
3.
针对往复压缩机气阀振动信号具有非平稳性、非线性和多分量耦合特性,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和改进多尺度熵的往复压缩机气阀故障诊断方法。利用VMD方法分解振动信号,并根据互相关系数法选取主要模态分量进行信号重构,可有效的消除噪声干扰;应用改进多尺度熵对重构信号进行量化分析,获得各振动信号的特征向量,并以极限学习机(Extreme Learning Machine,ELM)为故障分类器对往复压缩机气阀的4种状态实测信号进行分类识别。研究结果表明:该方法能够比较准确地提取出往复压缩机气阀故障信息,可实现往复压缩机气阀故障的正确识别。 相似文献
4.
5.
6.
在石油化工行业中,往复式压缩机是其中的关键设备,如果发生了故障,就会给石化企业的生产造成较大的损失,甚至会威胁人们的生命安全。故此,就需要采取科学的检测预防手段,以便能够及时发现故障并且加以解决。本文主要围绕往复压缩机的故障诊断方法进行研究。 相似文献
7.
往复压缩机故障诊断方法的研究 总被引:27,自引:9,他引:18
在分析、归纳往复发缩机常见各类故障及故障方法的基础上,研究参数法、振动声学法和油液分析法的工作原理、实施难点及适应范围,为适用适宜的方法诊断往复压缩机故障提供选择的基础。 相似文献
8.
9.
针对往复压缩机在线故障诊断时难以提取故障特征的实际情况,提出一种适于往复压缩机的在线诊断方法。该方法利用小波包对采集信号进行分解和重构来构造能量特征向量,用该方法构造的特征向量能有效地反映往复压缩机的故障特征,通过用BP神经网络进行故障诊断,结果表明该方法能提高往复压缩机的诊断率。 相似文献
10.
滚动轴承是机械设备中最常用的零部件之一,其运行状态直接影响整机性能。文章针对滚动轴承故障振动信号具有跨尺度复杂性的特点,提出了一种新的基于多尺度熵(Multiscale entropy,简称MSE)和BP神经网络的滚动轴承故障智能诊断模型。该模型首先利用MSE方法对滚动轴承不同健康状态下的振动信号进行特征提取,再将其作为BP神经网络的输入,实现网络训练,最后利用神经网络自动识别故障类型及故障程度。实验结果表明,该方法能有效地实现滚动轴承故障类型及程度的智能诊断,并具有对网络初始值不敏感及较低的误报率和漏报率等优点。 相似文献
11.
12.
基于LMD近似熵和PSO-ELM的齿轮箱故障诊断 总被引:1,自引:0,他引:1
《机械传动》2017,(8):109-113
针对齿轮箱使用中常见的故障检测与识别问题,考虑到齿轮箱振动响应信号非线性、非平稳的特性,提出基于局域均值分解(LMD)的近似熵和粒子群优化的极限学习机(PSO-ELM)结合的齿轮箱故障诊断方法。首先,使用LMD分解方法对齿轮箱各工况的振动信号进行分解,结合相关系数选取反映主要故障信息的前4个PF分量。利用近似熵进行定量描述,组成特征向量。最后用粒子群算法对ELM的输入权值与隐含层神经元阈值进行优化,建立PSO-ELM模型,并将近似熵特征值输入到ELM和PSO-ELM模型中,对齿轮箱不同工况进行故障识别与分类。结果表明,基于LMD近似熵和粒子群优化的ELM有更高的分类正确率,验证了该方法的可行性。 相似文献
13.
基于改进多尺度模糊熵的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
滚动轴承故障诊断的关键是敏感故障特征的提取。多尺度模糊熵(multi-scale fuzzy entropy,简称MFE)是一种衡量时间序列复杂性的有效分析方法,已经被用于滚动轴承振动信号故障特征提取。针对MFE算法中多尺度粗粒化过程存在的缺陷,笔者采用滑动均值的方式代替粗粒化过程,提出了改进的多尺度模糊熵算法,并通过仿真信号将其与MFE进行了对比分析。在此基础上,提出了一种基于改进多尺度模糊熵与支持向量机的滚动轴承故障诊断方法。最后,将所提故障诊断方法应用于的滚动轴承实验数据分析,并与基于MFE的故障诊断方法进行了对比,结果验证了所提方法的有效性和优越性。 相似文献
14.
《机械科学与技术》2014,(12):1854-1858
针对滚动轴承故障振动信号具有跨尺度复杂性的特点,提出了一种新的基于多尺度熵(multiscale entropy,MSE)和反馈式Elman神经网络的滚动轴承故障诊断方法。该方法利用MSE对滚动轴承不同健康状态下的振动信号进行故障特征提取,并将其作为Elman神经网络的输入,利用Elman神经网络自动识别轴承所属的故障类型及故障程度。实验数据包括不同故障类型和不同故障程度样本,结果表明提出的方法能有效地实现滚动轴承故障类型以及程度的智能诊断,效果优于前馈式概率神经网络(Probabilistic neural network,PNN),并具有较低的虚警率和漏警率。 相似文献
15.
《机电工程》2021,38(5)
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。 相似文献
16.
17.
对往复压缩机进气阀漏气故障进行模拟,采用热力参数、示功图和振动的方法在不同程度故障工况与正常工况下对压缩机进行现场监测.分析采用这几种方法对进气阀漏气故障的可诊断程度,探索压缩机气阀漏气故障特征提取的有效方法. 相似文献
18.
针对自动机故障诊断过程中振动信号的非线性、非平稳性、非周期性导致的故障特征较难提取,以及故障识别率偏低这一问题,提出了一种基于多尺度样本熵和多变量预测模型(variable predictive model-based class discriminate,简称VPMCD)的自动机故障诊断方法。首先,对采集到的信号进行小波阈值降噪处理;其次,利用小波包分解的方法对振动信号进行分解,得到多个尺度下的信号分量;然后,计算不同尺度下信号的样本熵值,并提取对故障特征较为敏感的尺度因子,组成故障特征向量;最后,利用多变量预测模型对故障特征向量进行训练和识别,进而实现自动机的故障诊断。自动机故障诊断试验分析结果表明,利用多尺度样本熵和多变量预测模型的方法可以准确识别多种典型的自动机故障类型。 相似文献
19.
针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化,并利用优化后的变分模态分解方法对轴承间隙振动信号进行了信号分解和重构处理;然后,研究了多尺度散布熵的粗粒化过程,通过将方差粗粒化代替均值粗粒化,进行了多尺度处理,构建了广义多尺度散布熵算法,利用广义多尺度散布熵算法对重构信号进行了故障特征提取分析;最后,设计了核极限学习机模型对故障特征向量集进行了分类识别,完成了往复压缩机轴承间隙不同故障状态的智能诊断研究。研究结果表明,该故障诊断方法的识别准确率高达97%,高效地实现了轴承不同种类故障的智能诊断目的。 相似文献
20.
提出了一种以经验小波变换(empirical wavelet transform,简称EWT)和多尺度熵相结合的高压断路器振动信号的特征向量提取和故障诊断的分析方法。首先,将高压断路器的振动信号进行经验小波变换,得到内禀模态函数(intrinsic mode function,简称IMF),选择相关系数较大的IMF进行重构;其次,提取重构信号的多尺度熵作为表征断路器状态的特征向量,采用归一化的方法对特征向量进行预处理并以此作为支持向量机(support vector machine,简称SVM)的输入向量进行分类训练;最后,将测试样本信号故障特征输入训练好的SVM,在SVM核函数参数进行网格算法优化的基础上进行状态识别及分类。实验结果表明,该方法可快速准确地检测高压断路器故障,实现了断路器故障的状态识别。 相似文献