首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了有效利用来自实际生产中监测系统的海量数据,并结合一维卷积网络在处理一维数据的优势,提出一种端到端的一维多尺度卷积神经网络滚动轴承故障诊断方法。首先使用两个一维卷积层和池化层将输入振动信号的长度缩减并增加通道数,然后利用多尺度并行一维卷积核对上层输出特征进行不同尺度上的反复提取和重构,最后将提取到的特征输入到一个全连接层进行故障分类。为验证算法的有效性,通过对滚动轴承不同工况、不同训练样本以及与支持向量机、BP神经网络和循环神经网络等算法对比分析。结果表明提出的模型及方法具有较好的识别效果,滚动轴承故障诊断正确率达到99.78%。  相似文献   

2.
薛妍  沈宁  窦东阳 《轴承》2021,(4):48-54
针对滚动轴承性能退化状态的识别问题,提出了基于一维卷积神经网络的故障诊断方法。以轴承原始振动信号为输入,利用一维卷积神经网络自适应学习特征和分类的能力,实现由数据到识别结果的“端到端”诊断,避免了人为因素的干扰。通过凯斯西储大学不同故障尺寸的滚动轴承故障数据(模拟不同故障程度)加以验证,所建立python-Keras深度学习模型的诊断正确率达到98.2%。用辛辛那提大学滚动轴承全寿命周期数据对退化全过程进行诊断,根据轴承原始信号时域指标变化将全周期分为正常、轻微退化、中度退化、严重退化和失效5种程度,通过一维卷积神经网络对轴承原始数据进行有监督学习,所建立python-Keras深度学习模型的故障诊断平均准确率为93%。  相似文献   

3.
针对行星齿轮箱故障信号成分复杂和时变性强的特点,提出了基于注意力机制的一维卷积神经网络(1D-CNN )行星齿轮箱故障诊断方法.首先,将行星齿轮箱各类故障状态的原始振动信号进行分段处理,作为模型的输入;其次,利用一维卷积神经网络对行星齿轮箱的原始振动信号学习齿轮故障特征,结合注意力机制( AM )对特征序列自适应的赋予不同的权重,增强故障特征信息;最后,利用 Softmax 分类器实现行星齿轮箱的故障诊断.通过故障实验验证以及与其他模型的对比,该故障诊断模型具有较强的学习能力,诊断性能优于其他的深度学习模型,有较好的工程实际意义.  相似文献   

4.
王永鼎  金子琦 《机械强度》2021,43(4):793-797
针对滚动轴承故障识别过程中,难以提取细微故障特征的问题,提出一种基于融合卷积神经网络与基于粒子群优化算法的支持向量机相结合的滚动轴承故障诊断方法.该方法将轴承振动信号同时作为一维卷积神经网络和二维卷积神经网络的输入信号,并在汇聚层中将提取到的故障信息融合,最后通过优化后的分类器提高故障识别准确率.为了验证该方法的诊断性能,将与融合卷积神经网络同规格的一维卷积神经网络和二维卷积神经网络进行对比.试验结果表明,该方法不仅可以提高故障识别准确率,还可以在信号受到噪声污染时保持良好的诊断性能.  相似文献   

5.
针对滚动轴承故障,提出了一种多卷积神经网络融合的滚动轴承故障识别方法.采集滚动轴承在不同状态下的振动信号,利用短时傅里叶变换得到二维时频谱图.基于二维时频谱图的数据结构设计得到二维卷积神经网络、一维时域卷积神经网络、一维频域卷积神经网络,利用这三个卷积神经网络的输出结果构建全连接神经网络进行融合.利用引导聚集集成学习方...  相似文献   

6.
针对起重机械中的滚动轴承在高转速、重载荷和强噪声背景下,早期故障特征难以提取及有效识别的问题,提出一种改进卷积神经网络(CNN)的故障诊断方法。该方法首先应用短时傅里叶变换(STFT)将传感器采集到的一维振动信号转换为二维时频图,并将其作为改进卷积神经网络的输入,然后利用卷积神经网络强大的特征提取能力自适应地提取故障特征。最后,通过CNN模型最后一层的Softmax层对提取到的特征进行分类从而实现故障诊断的目的。  相似文献   

7.
针对轴承智能故障诊断过程中的特征自适应提取和在变工况下诊断能力差的问题,提出了一种基于特征通道权重调整的“端对端”一维卷积神经网络(Squeeze-Excitation Convolutional Neural Network,SECNN)滚动轴承故障诊断模型。首先采用一维卷积神经网络自适应地从原始振动信号中提取特征进行分类;然后通过增加特征通道权重模块来获取通道全局信息,学习特征通道之间的依赖关系;再据此对特征通道权重进行调整,增强滚动轴承故障诊断模型在变工况下的特征自适应提取能力。通过轴承实验台数据的验证结果表明:SECNN在多个变载荷工况下的故障诊断准确率均值达到97%,相比于传统方法提高了20%左右。同时利用t-SNE技术可视化特征提取过程,进一步验证了所提取的诊断模型的有效性。  相似文献   

8.
针对滚动轴承故障种类繁多,故障信号特征不明显的问题,提出了一种小波包能量与卷积神经网络相结合的滚动轴承故障判别方法.首先对原始振动信号进行小波包分解,其次求取分解后各个子带信号的能量,归一化后得到一组特征向量,最后将该特征向量作为卷积神经网络的输入,进而判断输入信号所对应的故障类型.为验证所提方法的有效性和优越性,采用美国凯斯西储大学轴承数据集,将所提出的方法与另外两种故障诊断算法进行对比.在不同工况情况下的对比试验结果表明,小波包能量特征提取方法,能够有效提取出原始信号故障特征.相较于常见的卷积神经网络的故障诊断方法,所提方法能够有效提高故障识别准确率,且速度快、稳定性好.  相似文献   

9.
采用卷积神经网络对旋转部件进行故障诊断时,其对多尺度的故障特征利用有限,且网络层结构和超参数调试费时费力,针对上述问题,提出了一种基于离散二进制粒子群优化多尺度一维卷积神经网络的BPSO-M1DCNN算法。首先,对M1DCNN网络进行了初始化设计,采用了BPSO算法自适应调整超参数和网络结构构建BPSO-M1DCNN网络;然后,将原始振动数据输入BPSO-M1DCNN网络,进行了特征学习和提取,将学习到的故障特征进行了分类输出;最后,将该算法应用于行星齿轮箱的故障诊断试验,并将其结果与用BPSO-BP神经网络、一维卷积神经网络、M1DCNN网络的结果进行了对比分析,利用变化曲线表示M1DCNN网络、BPSO-M1DCNN网络的正确率和损失率,采用混淆矩阵显示各类故障诊断精度,并利用T-SNE算法对其特征学习过程进行了可视化。研究结果表明:相比BPSO-BP神经网络、1DCNN网络、M1DCNN网络,基于BPSO-M1DCNN网络的行星齿轮箱测试集的平均准确率均有一定提升,应用于行星齿轮箱故障的诊断效果较好。  相似文献   

10.
魏亚辉  郭计元  郜帆 《轴承》2023,(2):89-96
针对基于深度学习模型的滚动轴承故障诊断方法易受环境噪声干扰的问题,提出了一种基于拉普拉斯小波滤波(LWF)和自注意力机制-动态选择-卷积神经网络(SA-DS-CNN)的滚动轴承故障诊断模型。首先,提出一种拉普拉斯小波阻尼参数自适应选取策略,使用拉普拉斯小波对采集的滚动轴承振动信号进行相关滤波并进行功率谱变换;其次,基于卷积神经网络框架,引入自注意力机制和动态选择机制,构造SA-DS-CNN;最后,利用SA-DS-CNN提取功率谱特征,根据轴承的不同故障状态定位相关特征信息,实现故障特征的提取和诊断。对N205EM圆柱滚子轴承的故障诊断试验表明:LWF降噪效果较好,能为SA-DS-CNN模型提供优秀的训练样本;SA-DS-CNN模型能抑制无用通道信息,增强网络特征学习能力;LWF和SA-DS-CNN组合模型的故障诊断准确率达到99.65%,优于其他组合模型。  相似文献   

11.
针对滚动轴承的故障诊断,分析滚动轴承故障机理及特点,提出基于小波包分析的滚动轴承振动信号的特征向量提取算法,并建立PSO-Elman神经网络进行故障诊断和识别。将滚动轴承故障振动信号进行小波包分解,构造频带能量谱作为特征向量,输入PSO-Elman神经网络对故障进行识别。试验结果表明,基于小波包分析和PSO-Elman神经网络相结合的方法可准确地实现滚动轴承的故障诊断。  相似文献   

12.
李军  张永祥  王凯  姚晓山 《轴承》2008,(2):35-38
分析了滚动轴承振动信号的多通道盲反卷积模型.在实验室中利用最小均方盲反卷积算法,从测量信号中提取出滚动轴承故障冲击信号,实现了滚动轴承的故障诊断.  相似文献   

13.
《机电工程》2021,38(8)
传统的轴承故障诊断方法需要进行复杂的信号处理,同时依赖专家知识和人工构造算法等技术手段,并且工程实际中可利用的机械设备故障数据量较少,针对这一系列问题,以滚动轴承正常运行时和发生不同故障时收集到的原始振动信号为识别依据,提出了一种基于AlexNet和迁移学习的滚动轴承故障诊断方法。将收集到的滚动轴承原始振动数据转换为振动信号图,并为振动信号图设定了标签,以作为训练样本;对预训练的AlexNet网络进行了微调,以使其符合任务需求,并使用准备好的训练样本对网络进行了训练;使用美国凯斯西储大学轴承数据中心的数据集,对网络模型的性能进行了验证,在滚动轴承的内圈故障、外圈故障和滚动体故障3个故障类别下,达到了100%的诊断精度。研究结果表明:在标记故障数据稀缺的情况下,采用该方法仍可实现对滚动轴承常见故障类型的诊断,且与现有先进方法相比,该方法的诊断精度有所提升。  相似文献   

14.
由于在工程实际中采集的故障振动数据分布不同且难以标记,使得卷积神经网络(convolutional neural network,简称CNN)在故障诊断过程中难以发挥最佳作用。针对此问题,提出了一种基于一维卷积神经网络迁移学习的滚动轴承故障诊断方法。首先,建立了可直接处理轴承振动信号的一维卷积神经网络模型并使用源域数据对其进行预训练;其次,利用最大均值差异(maximum mean discrepancy,简称MMD)度量源域和目标域在预训练模型中各层上的特征分布距离,并通过MMD判断卷积层和全连接层能否迁移,若不能迁移则使用初始化方式补全模型;最后,使用少量标记的目标域数据再次训练模型,进而对目标域故障数据进行分类辨识。利用故障轴承数据对方法有效性进行验证,结果显示,该方法在目标域只有少量标签的情况下能够实现变工况滚动轴承故障分类,并达到较高的诊断准确率。  相似文献   

15.
针对滚动轴承工作环境恶劣且采集到的振动信号具有非线性、非平稳性等特征,为了自适应提取故障特征以及提高轴承故障智能诊断准确率,提出基于鲸鱼算法(Whale Optimization Algorithm,WOA)优化变分模态分解(Variational Mode Decomposition,VMD)与卷积神经网络(Convolution Neural Network,CNN)相结合的故障诊断方法。首先,使用鲸鱼优化算法对VMD超参数进行寻优,找到VMD最优的分解层数与惩罚因子,并利用优化后的VMD对轴承原始信号进行分解。其次,用连续小波变换将分解得到的一维本征模态信号转化为相应的二维时频图。最后,将二维时频图作为二维卷积神经网络的输入,并对其输入的时频图进行深层特征提取与模式识别。实验表明,所提出的方法能高效提取故障特征,准确率高达99.78%。  相似文献   

16.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。  相似文献   

17.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。  相似文献   

18.
针对现有一维卷积网络和残差网络在故障诊断方面的不足,本文将一维卷积网络与残差网络相结合,提出了一种基于改进一维残差网络的轴承故障诊断方法。该方法通过添加一条残差连接通道的方式,增加残差网络宽度,以学习更丰富的特征,提高故障诊断准确率。利用6种轴承状态对所提方法的分类效果进行了测试。实验结果表明,所提方法能直接利用振动信号,在较小训练与测试样本比的情况下实现故障诊断,当训练样本为90,测试样本为810(训练与测试样本比为1:9)时,驱动端故障诊断的正确率为99.6%;当训练样本为270,测试样本为630(训练与测试样本比为3:7)时,风机端故障的正确率为97.3%。  相似文献   

19.
往复压缩机振动信号特性复杂,传统特征提取方法难以有效提取故障特征,从而影响故障诊断效果。提出了基于原始振动信号卷积神经网络(RVCNN)的方法,将采集的一维原始振动信号作为输入,充分利用卷积神经网络(CNN)自动提取信号特征的特性,对往复压缩机故障进行特征提取及诊断。使用从试验台获得的压缩机气阀故障数据样本进行测试,结果表明,与传统方法相比,RVCNN方法具有更高的故障识别率和更好的抗噪性能。  相似文献   

20.
针对滚动轴承振动信号的特征难以提取的问题,提出一种基于MTF-DenseNet的滚动轴承故障诊断方法。利用马尔可夫变迁场(MTF)将滚动轴承的一维时间序列信号进行编程,生成二维图像,从而很好地保留时间序列信号的时间依赖性和频率结构,之后将其输入到密集连接卷积网络(DenseNet)实现故障特征的提取,进而实现故障诊断。采用凯斯西储大学轴承数据集上数据进行实验,实验结果表明,该方法在数据集上的故障分类准确度达到99.35%,故障诊断效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号