首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
本文主要针对氯化铁浸出铁铜合金回收海绵铜工艺中不溶物含量、铁含量均较高问题,重点考察铁铜合金不溶物、海绵铜的酸洗分别对海绵铜品位的影响,采用清洗铁铜合金及对浸出液压滤、盐酸洗涤海绵铜的方式进行处理,有效提高海绵铜品位。  相似文献   

2.
本文研究了盐酸溶液浸出废铝泥的工艺,将浸出液与聚氯化铁充分混合、熟化后,可制得稳定性较好、混凝效果强的聚合氯化铁铝无机高分子混凝剂。考察了浸出工艺的可行性,并确定该工艺的最佳浸出工艺参数。结果表明,在搅拌速度250r·min~(-1)、液固质量比1.5∶1、浸出剂盐酸浓度25.12%、反应温度60℃、反应时间1.5h的条件下,废铝泥中铝的浸出率可达99.05%。  相似文献   

3.
采用氧气湿法酸浸技术对内蒙霍格旗低品位难选硫化铜矿进行了浸铜试验,以纯氧作氧化剂,氯离子为催化剂,在密闭条件下,硫酸浸出Cu^2+,经铁屑还原制备出海绵铜。考察了矿石粒度、酸用量、固液比、温度、三氯化用铁量对铜浸出率的影响,确定了最佳浸出工艺条件,在最佳浸出工艺条件下,铜的浸出率达到98%;浸出液除杂后,采用还原铁粉置换,考察了置换时间、pH、温度和还原铁粉用量对铜单质生成的影响,在最佳置换工艺条件下,制备出的海绵铜含量为80.1%。工艺采用闭路循环,可充分利用资源,反应时间缩短,反应温度降低,且克服了火法炼铜中二氧化硫对环境的污染,为硫化铜矿的湿法冶炼开辟了一条新途径。  相似文献   

4.
介绍了硝酸铵氧化分解海绵铜生产氯化亚铜的方法。工艺过程:将海绵铜加入硝酸铵和硫酸的混合液中,海绵铜中的铜溶解得到硫酸铜溶液;向硫酸铜溶液中加入亚硫酸铵和氯化铵,亚硫酸铵将硫酸铜还原为硫酸亚铜,氯化铵将硫酸亚铜氯化沉淀为氯化亚铜;氯化亚铜经酸洗、醇洗、烘干得到成品;滤液经蒸发浓缩得到硫酸铵副产品。最佳制备条件:(1)海绵铜溶解过程,反应温度为60 ℃,硫酸浓度为0.2~0.3 mol/L,硝酸铵用量为过量10%~20%;(2)沉淀氯化亚铜过程,亚硫酸铵与硫酸铜的物质的量比为0.6,氯化铵与硫酸铜的物质的量比为1.0~1.1; (3)沉淀氯化亚铜用质量分数为2%的硫酸水溶液洗涤,再用质量分数为95%的乙醇洗涤,再经烘干得到氯化亚铜产品,所得产品质量符合GB/T 27562-2011《工业氯化亚铜》要求。  相似文献   

5.
次氧化锌浸取净化新工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了以炼铅厂含锌烟灰为原料,经盐酸浸取、高锰酸钾氧化、锌粉置换制备氯化锌溶液的工艺。以锌的浸出率最高,杂质铅的浸出率最低,铁、锰、铅、镉、铜脱除最彻底为目标,实验得出最佳的酸浸和净化条件:40 g次氧化锌、71 mL浓盐酸、130 mL水在30 ℃下浸取50 min后,过滤,洗涤滤渣,滤液定容为250 mL,取200 mL滤液,滤液中加高锰酸钾0.013 6 g,10 ℃下氧化2 h后过滤,取200 mL二次滤液向其中加锌粉0.12 g,40 ℃下反应50 min后过滤,得浓度为1.63 mol/L的氯化锌溶液。在上述工艺条件下,锌的浸出率为94.2%,氯化锌溶液中杂质离子含量满足HG/T 2323-2012《工业氯化锌》中优等品的要求,可用来生产符合GB/T 19589-2004《纳米氧化锌》规定的Ⅰ类纳米氧化锌。  相似文献   

6.
本文以线路板含铜污泥与棕化废液协同处理制得的海绵铜为原料,对海绵铜采用液碱除有机物的方法,利用氨水-氯化铵浸出铜形成铜氨溶液,并与酸蚀刻液合成制取碱式氯化铜。经研究表明:在液碱浓度为15%,液固比为3︰1,搅拌时间10 min,常温的条件下,液碱对海绵铜中有机杂质的去除率高达90%,制得的碱式氯化铜完全符合碱式氯化铜饲料级的标准。  相似文献   

7.
对碳酸铜矿中铜、钴浸出过程的反应及行为进行了分析。在大量实验的基础上,结合理论分析,探讨了浸出条件对矿样中钴选择性浸出的影响,进而确定了钴选择性浸出的实验室最佳条件为:浸出时间3 h,浸出温度70℃以上,pH为5,液固体积比为5∶1,浸出液中添加质量浓度为27.11 g/L的硫酸铜溶液1.5 mL。实验结果表明,该条件下钴的浸出率可达到78.37%,铜的浸出率仅为0.04%,实现了钴与铜的有效分离,可以优先浸出钴,实现钴资源的充分利用。  相似文献   

8.
研究了以炼铅厂铅锌烟灰为原料,采用盐酸浸取并以高锰酸钾氧化铁锰、锌粉置换镉铅铜两步法生产氯化锌的新方法。以锌浸出率最高、铅浸出率最低、铁锰镉铅铜除杂最彻底为考察目标,通过实验找到最佳工艺条件:40 g铅锌烟灰在由71 m L浓盐酸和130 m L水配制的混酸中在30℃条件下浸取50 min,然后加入高锰酸钾0.017 g在10℃条件下继续反应2 h,过滤后的滤液中加入锌粉0.15 g在40℃条件下反应50 min,过滤得到浓度为1.65 mol/L的氯化锌溶液。在上述工艺条件下锌的浸出率为95.4%。用制备的氯化锌溶液生产氧化锌,杂质含量满足GB/T 19589—2004《纳米氧化锌》一级品要求。  相似文献   

9.
从硫化铜矿制取饲料级硫酸铜工艺研究   总被引:1,自引:0,他引:1  
研究了焙烧—浸出法对中品位硫化铜矿的工艺条件,以及经铁屑置换制海绵铜(品位达89%),再制取饲料级硫酸铜的工艺。通过适当的焙烧温度,可大大降低硫酸耗量,使铜浸出率达98%,铜的总回收率大于94%。  相似文献   

10.
针对某复杂火山岩型铀多金属矿石在常规浸出工艺条件下铀、铜、银综合浸出率低的问题,开展了添加氯化钠氧化焙烧—硫酸浸出铀和铜—氨化浸出银的工艺研究,重点考察了焙烧温度、氯化钠添加量、焙烧时间等对多金属综合浸出效果的影响。结果表明,通过氯化氧化焙烧,可促使硫化矿物的热分解,使其包裹的金属暴露出来,并对金属矿物产生氯化作用,从而有利于浸出,在氯化钠加入量3%、焙烧温度500℃、焙烧时间2 h的条件下可以获得较高的综合浸出率,铀、铜、银的浸出率可以分别达到88.24%、80.52%、90.88%,比常规浸出条件下分别提高了5.89、39.61、45.27个百分点。  相似文献   

11.
采用盐酸搅拌浸出-N902萃取工艺回收铜渣氯化烟尘中的铜,考察了影响铜渣氯化烟尘浸出的主要因素. 结果表明,在盐酸浓度15%(w)、液固比4 mL/g、60℃的条件下浸出1 h,铜浸出率可达98.95%,铁、锌、镍浸出率分别达91.58%, 95.8%和93.66%,铅浸出率为5.96%. 盐酸浸出可实现铜与铅的有效分离. 萃取剂N902对浸出液中的铜具有较好的萃取选择性,振荡时间120 s、相比为1、N902浓度30%和pH=3.0的条件下,浸出液铜浓度由7.4 g/L降至0.11 g/L,回收率达98.51%,浸出液中Fe, Zn, Ni和Pb萃取率均不高于1.5%.  相似文献   

12.
控制不同工艺条件浸出镍电解一次铁渣研究表明,升高温度有利于铁渣中铁、镍、铜元素的浸出;当反应体系温度≥60℃时,采用浓度为20%的硫酸浸出镍电解一次铁渣,反应1.5 h,可以将铁渣中的绝大多数铁、镍、铜元素浸出;正交实验表明,当控制反应时间为1.5 h时,镍电解一次铁渣浸出的最佳工艺条件为:硫酸浓度20%,反应液固比10∶4,反应温度90℃。  相似文献   

13.
废锌催化剂是一种含锌废弃物,可采用铵盐浸出工艺回收其中的锌资源。具体步骤:对废锌催化剂先进行预处理,以氯化铵为浸取剂,经浸取反应、过滤分离得到氯化锌溶液。实验得到适宜的工艺条件:废锌粒度为58~ 80 μm、氯化铵质量分数为17%、反应温度为60 ℃、反应时间为2 h。在此条件下,锌浸出率达95.2%,镍残存率为0.7%,实验证实了氯化铵溶液作为浸取剂的优势。XRD测试表明,前驱体为Zn4CO3(OH)6·H2O,得到的样品是氧化锌粉体,粉体粒径为63 nm,纯度为99.3%。  相似文献   

14.
对铬铁酸浸液除铁所得草酸亚铁进行氧气氧化-氨浸处理,回收除铁剂草酸盐并用其制备氧化铁黑颜料. 考察了氨水用量、反应温度、液固比、反应时间、氧气流量、反应液pH值及晶化温度等对C2O42-浸出率和氧化铁黑质量的影响. 结果表明,反应液经60℃晶化处理后,在反应温度80℃、氨水与草酸亚铁摩尔比为3、液固比5 mL/g、氧气流量0.1 L/min、pH值6.9~7.4、反应时间3 h的条件下,C2O42-的浸出接近100%,得到的氧化铁黑质量与国产722氧化铁黑产品相当.  相似文献   

15.
Ultrasonic Electro-oxidation Process of Molybdenite Concentrate   总被引:1,自引:1,他引:0  
The oxidation of MoS2 concentrate in NaCl solution electrolysis environment and the impact of ultrasonic field on the leaching process of Mo were investigated. The decomposition process of MoS2 can be accelerated by ultrasonic field. When there are iron ions, anode potential is decreased about 0.7 V than that without iron ions, iron ions in the solution play an electronic transmission role by directly joining the electrode reaction of anode and oxidation leaching process. The results indicate that the leaching rate of Mo can achieve 99.5% with ultrasonic field exertion working 4 min in every 5 min under the conditions that the liquid-solid ratio is 20, mixing rate 500 r/min, iron ion concentration 6%, leaching temperature 40℃, pH (initialization) 1, and leaching time 4 h, respectively.  相似文献   

16.
This paper describes the final part of a study on the utilization of a special anode-support system for the electrorefining of industrial cement copper produced by small mines. This type of cement is obtained from the leaching solutions of copper oxide minerals by precipitation with iron scrap. The cement is highly contaminated with iron, different metallic and non-metallic compounds and chloride. Therefore it is necessary to purify the cement copper before the electrorefining process. A two-stage method of purification is proposed, washing with water (pH4) to eliminate chloride and soluble species and magnetic removal of the metallic iron. A circular cell provided with an annular AISI-316 stainless steel mesh supporting the mass of cement copper was utilized. A vertical rotary cylinder of AISI-316 stainless steel was used as the cathode. As operating conditions, a solution of CuSO4.5H2O: 150gdm-3 and H2SO4: 50gdm-3, jc: 5.0Adm-2, T: 40°C, u: 60rpm, were used. A cement copper of 85% purity was utilized. Under these recommended operating conditions it is possible to obtain copper sheets of good quality, meeting the ASTM B-11591 specification for commercial cathodes.  相似文献   

17.
In this study, the leaching kinetics of malachite in perchloric acid solutions was investigated. The dissolution behaviors of copper, zinc, and iron in the ore matrix were determined at different acid concentrations and reaction temperatures. It was observed that the concentration of perchloric acid had a major effect on the dissolution of copper, zinc, and iron. It was determined that the effect of temperature on the dissolution of these species was not as significant as concentration impact. The results obtained shown that copper in the ore matrix was completely leached while zinc and iron were partially dissolved in perchloric acid solutions. In addition, the effects of the acid concentration, reaction temperature, stirring speed, particle size, and solid-to-liquid ratio on the leaching of malachite were researched. In these experiments, it was observed that the leaching rate of copper increased with increasing solution concentration, stirring speed, and reaction temperature, and with decreasing solid-to-liquid ratio and particle size. A kinetic analysis was performed, and it was found that the rate of leaching reaction obeyed the mixed kinetic control model in the unsteady state. The activation energy of the leaching process was calculated to be 34.69 kJ/mol.  相似文献   

18.
Based on the oxidation of ferrous ions in lithium iron phosphate and reduction of trivalent cobalt ions in lithium cobaltate, an innovative combined recovery process of lithium iron phosphate and lithium cobaltate powders is proposed. The effects of leaching conditions on leaching performance are studied and the optimal leaching conditions are obtained. Under these conditions, the leaching efficiencies of lithium and cobalt ions reach up to 99.92% and 81.11%, respectively. After removing ferric ions from leachate, the cobalt and lithium ions are separately recovered from the leaching solution. The final precipitation rate of cobalt ions is up to 97.71% with the purity of cobalt oxalate as 99.94%. In addition, the precipitation rate of lithium ions is 78.54% and the purity of lithium carbonate reaches up to 99.94%. Finally, the reaction path and mechanism for the combined recovery of lithium iron phosphate–lithium cobaltate system are preliminary investigated.  相似文献   

19.
以金精矿焙烧-酸浸除杂后的酸浸渣与碳酸氢铵反应生成的转化渣为原料,进行酸溶浸铅工艺研究。通过正交实验考察了液固质量比、浸出pH和浸出时间等因素对铅浸出率的影响,得到最佳工艺条件:浸出液固质量比为2∶1、浸出液pH=0.5、浸出时间为2 h。在此条件下,金属铅浸出率可达83%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号