首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用Fluent软件对金源煤矿2321综采面采空区自燃"三带"进行了数值模拟,得出采空区自燃"三带"云图,并现场对2321综采面采空区束管埋点监测采空区气体变化规律,结合氧气浓度划分2321综采面采空区自燃"三带"的分布范围。结果表明:数值模拟和现场实测结果基本相吻合,表明Fluent软件数值模拟对金源煤矿综采面采空区防灭火具有一定的指导意义。  相似文献   

2.
为准确判定煤矿采空区自燃"三带"的范围,给工作面防灭火技术措施的制定提供支撑,以俄霍布拉克煤矿5106综放工作面为试验工作面,采用现场测试和数值模拟方法,确定了先划分采空区氧化带边界线后再划分自燃"三带"的思路。确定以氧气浓度6%为指标划分氧化带和窒息带的边界,以及以漏风风速0.24 m/min为指标划分氧化带和散热带的边界,进而划分采空区自燃"三带"。研究结果表明,进风侧采空区散热带<20.5 m,氧化带在20.5~127.6 m,窒息带>127.6 m;回风侧采空区散热带<20.2 m,氧化带在20.2~121.45 m,窒息带>121.45 m。该研究结果为5106工作面防灭火技术措施的制定提供了科学依据。  相似文献   

3.
为防止寸草塔煤矿22煤层煤自燃,对22煤层采空区自燃"三带"进行划分.通过现场束管监测获得采空区内氧气浓度分布,并基于氧浓度的"三带"划分标准,得出22煤层采空区自燃"三带"范围,即运胶顺槽:散热带51 m,自燃带51~147 m,窒息带147 m;回风顺槽:散热带43 m,自燃带43~141 m,窒息带141 m.使用Fluent数值模拟软件模拟不同配风量和瓦斯抽放对自燃"三带"的分布影响,得出了配风量越大、抽放管道进入采空区深度越深、抽采负压越大,氧化带宽度也随之增大,煤自燃的危险性越大.  相似文献   

4.
通过实际观测采空区浮煤状况、工作面推进速度和采空区进回风侧O2浓度的分布规律,根据"三带"划分方法及划分指标,对白羊岭煤矿15101综放工作面进行了"三带"划分,掌握了采空区煤自燃"三带"分布规律及危险区域。15101工作面散热带的分布范围在采空区距离工作面10~100 m,进风侧由于漏风强度较大,散热带宽度较宽。窒息带在距离工作面165 m以上的采空区深部;在工作面回风侧,窒息带的深度约为137 m。氧化升温带宽度在工作面进风侧最大,达到55 m左右。  相似文献   

5.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

6.
《煤炭技术》2015,(8):153-156
针对易自燃厚煤层综放面采空区,采用氧浓度指标和漏风风速指标划分了采空区自燃三带范围。应用FLUENT软件,通过建立采空区模型,设定模拟参数,采用漏风风速指标划分出采空区氧化带范围为18~93 m。通过在采空区进回风巷各铺设150 m束管,布置10个测点,经过50 d井下采样实验室色谱分析,采用氧浓度指标划分出采空区氧化带范围为20~93 m。2种指标划分自燃三带误差在合理范围内,最终确定采空区氧化带范围为18~93 m。  相似文献   

7.
孙海峰 《煤》2020,29(2):44-46
为搞清辛置煤矿2-208工作面采空区自燃“三带”的分布范围,通过在工作面的进、回风巷预埋两组束管,进行现场监测采空区氧浓度场的分布规律,并结合计算机数值模拟,分析得出辛置矿2-208工作面采空区“三带”分布规律:0~28 m为散热带,28~52 m为氧化带,距工作面大于52 m为窒息带。由此提出了采空区防灭火技术措施。  相似文献   

8.
针对浅埋近距离采空区下综采面采空区煤层自燃防治,以李家壕煤矿31115工作面为生产技术背景,采用理论分析与现场实测相结合的方式,研究了采空区气体浓度分布特征与采空区自燃"三带"分布范围。研究结果表明:由于上覆采空区气体下泄导致31115工作面采空区O2、CO气体浓度异常,下泄影响范围为采空区100 m以内;工作面进风侧散热带宽度为25 m,氧化升温带宽度为137 m,大于137 m为窒息带;回风侧散热带宽度为21 m,氧化升温带宽度为92 m,大于92 m为窒息带。  相似文献   

9.
为提高急倾斜煤层伪斜开采条件下瓦斯与煤自燃综合防治效果,基于煤自燃"三带"划分标准和瓦斯爆炸三角形,建立采空区自燃"三带"分布的数学模型,利用COMSOL Multiphysics5.2模拟软件,对东林煤矿3409工作面采空区孔隙率、气体浓度、温度等参数进行模拟分析。结果表明:采空区上部孔隙率较大,下部除回风巷道边缘处较大外,其他区域孔隙率相对较低;氧气浓度结合漏风速度共同划分氧化带范围为:在进风侧氧化带宽23.2 m,在回风侧宽37.6 m,高温区域主要集中在回风侧、采空区的下部距离工作面较近区域;采空区上部瓦斯浓度相对较低,下部瓦斯浓度相对较高;瓦斯爆炸危险区域为中间工作面支架处区域范围为爆炸危险区域。  相似文献   

10.
以东峡煤矿37220-1大倾角采空区为研究对象,聚焦采空区自燃"三带"划分问题,运用GAMBIT和FLUENT这2种软件,建立了数值模拟模型,对上下行通风条件下采空区氧气浓度分布进行了模拟研究,并根据模拟结果绘制出不同高度条件下采空区自燃"三带"分布情况。模拟结果显示:大倾角采空区自燃"三带"在分布上呈三维立体状态;采用上行通风时,采空区氧化带宽度较下行通风时大;随着距底板高度的增大,采空区氧化带范围以下顺槽尾部为圆心逐渐缩小。  相似文献   

11.
通过对老石旦煤矿16402工作面采空区回风侧氧气浓度变化规律分析,确定了按氧气浓度划分采空区氧化自燃带范围。在分析低瓦斯矿井采空区自燃三带的基础上,结合压实区范围对氧化自燃带进行了修正。  相似文献   

12.
张斌 《江西煤炭科技》2020,(3):72-74,78
为有效分析31102采空区自燃"三带"的分布规律,根据31102工作面及采空区的具体特征,采用现场采空区埋管抽气的方式进行采空区内指标气体的监测;根据监测结果,对采空区内高温危险区域进行分析,并根据采空区自燃"三带"的划分方法进行"三带"划分。结果表明:31102工作面采空区进风侧散热带为20 m,氧化带为20~108 m,窒息带为108 m;回风侧采空区散热带为20 m,氧化带范围为20~84 m,窒息带为84 m。  相似文献   

13.
为了研究高河煤矿3#煤层W1310工作面采空区在Y型通风(柔膜墙沿空留巷支护)、高抽巷情况下采空区遗煤自燃发火规律、"三带"分布范围,对采空区遗煤自燃做出超前预测。通过在工作面布置束管监测系统,抽取采空区气体并用气相色谱仪化验,分析O_2、CO、CO_2、CH_4、C_2H_2、C_2H_4、C_2H_6等气体浓度变化,综合考虑来划分采空区自燃"三带"范围。最终确定"三带"范围,进风侧:散热带:0~45m;氧化升温带:45~135m;窒息带:大于135m。回风侧:散热带:0~20m;氧化升温带:20~43m;窒息带:大于43m。月推进速度大于70. 8m/月。实践表明,与工作面实际情况非常符合,防止了采空区自燃,为W1310工作面防灭火提供了有效的技术指导。  相似文献   

14.
介绍了采空区自燃"三带"研究的必要性,分析了常用的3种划分自燃"三带"指标,确定了试验工作面综合指标各自的指标值。针对试验工作面采用漏风风速和氧气体积分数等综合指标,划分出该试验工作面采空区自燃"三带"范围为18~93 m。采用数值模拟方法,划分出试验工作面采空区氧化带范围为18~93 m。通过现场实测,采用氧气体积分数指标划分出采空区氧化带范围为20~93 m。综合指标确定试验工作面采空区氧化带范围为18~93 m。为研究采空区自燃"三带"的划分提供了一种新方法,建议在类似矿井中使用该方法进行采空区"三带"划分。  相似文献   

15.
利用COMSOL模拟软件对高河煤矿W1310工作面采空区自燃"三带"进行数值模拟,通过氧气浓度来划分出采空区自燃"三带"。结果表明:高河矿W1310工作面采空区"三带"划分的分界点是采空区深部距工作面52m和297m;适量降低工作面供风量,可以实现生产过程中遇见断层、陷落柱以及尾采、停采时遏制采空区遗煤自然发火事故的发生。  相似文献   

16.
王海生 《煤矿安全》2012,43(10):177-180
通过划分采空区自燃"三带",可以确定出工作面对自燃防治有利的最低月推进度。目前采空区自燃"三带"的划分还没有形成统一的标准。根据棋盘井煤矿0912工作面实际情况,沿采空区布置了4个测点,测定出采空区气体各组分变化规律,确定了低瓦斯矿井工作面采空区自燃"三带"的划分新方法。并利用Fluent软件,对采空区自燃"三带"进行了数值模拟。结果表明:0912工作面采空区自燃"三带"的范围为:散热带<24 m,自燃带24~113 m,窒息带>113m。为了保证在最短的自然发火期内,能将采空区内遗煤甩到自燃"三带"的窒息带以内,工作面最低月推进度应≥68 m。  相似文献   

17.
为保证寸草塔煤矿2-2煤层自然发火防治做到科学、合理、经济、有效,寸草塔煤矿展开对2-2煤层工作面采空区自燃“三带”划分的研究工作。通过对22301综采工作面采空区气体成分变化规律测定,划分了22301综采工作面采空区自燃“三带”分布范围,采空区进风顺槽侧氧化升温带较宽,为128 m;回风顺槽侧较窄,为101 m;确定了最小安全推进速度为2. 15 m/d,进而为合理确定防灭火工艺提供了依据,有效地指导了工作面的安全、高效回采。  相似文献   

18.
通过在祁南煤矿3410工作面采空区沿走向布置测温传感器和取样束管,对采空区内温度和气样成分进行了测定和分析,根据氧气浓度划分自燃"三带"的标准,确定了3410工作面采空区自燃"三带"的范围,并在此基础上计算出该工作面的最低推进速度63.75 m/月。  相似文献   

19.
为了防止采空区内遗煤氧化积热自燃诱发矿井火灾,以小庄煤矿40201工作面采空区为研究对象,通过现场实测采空区内O_2和CO浓度,利用Matlab软件得到O_2和CO浓度的分布规律和等值线图,以O_2浓度作为自燃“三带”的划分指标,获得试验工作面采空区自燃“三带”的分布范围,将O_2和CO浓度进行叠加,确定采空区内高危险区域的范围,并计算了工作面的最大停产整顿时间为7 d。真实、直观地显示出采空区自燃“三带”的分布情况,能够为小庄煤矿采空区防灭火工作的实施提供技术支撑,确保40201工作面的安全回采。  相似文献   

20.
为了高效防治小青煤矿E1404工作面采空区煤炭自然发火,根据漏风风速和氧气浓度2种划分方法对采空区自然发火"三带"范围进行了数值模拟分析,得出E1404工作面采空区散热带为0~17.5 m,氧化自燃带为17.5~140 m,窒息带为大于140 m。进而在氧化自燃带范围内沿着工作面倾斜方向布置了3个高温点(靠近进风巷、工作面中间、靠近回风巷),采用COMSOL Multiphysics软件对温度场进行数值模拟,得出当高温区域越靠近进风巷时,采空区内的整体温度要大于靠近回风巷。基于采空区煤自燃危险区域分析结果,提出了上下隅角堵漏风和采空区注氮2种防灭火措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号