首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SiC powder prepared by the Na flux method at 1023 K for 24 h and Ba were used as starting materials for synthesis of tribarium tetrasilicide acetylenide, Ba3Si4C2. Single crystals of the compound were obtained by heating the starting materials with Na at 1123 K for 1 h and by cooling to 573 K at a cooling rate of −5.5 K/h. The single crystal X-ray diffraction peaks were indexed with tetragonal cell dimensions of a = 8.7693(4) and c = 12.3885(6) Å, space group I4/mcm (No.140). Ba3Si4C2 has the Ba3Ge4C2 type structure which can be described as a cluster-replacement derivative of perovskite (CaTiO3), and contains isolated anion groups of slightly compressed [Si4]4− tetrahedra and [C2]2− dumbbells. The electrical conductivity measured for a not well-sintered polycrystalline sample was 2.6 × 10−2–7 × 10−3 S cm−1 in the temperature range of 370–600 K and slightly increased with increasing temperature. The Seebeck coefficient showed negative values of around −200 to −300 μV K−1.  相似文献   

2.
We investigate the effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3−xKxMnO3 (x = 0.05, 0.1, 0.15 and 0.2) powder samples. Our polycrystalline compounds were synthesized using the solid-state reaction at high temperature. X-ray diffraction characterizations showed that all our studied samples crystallize in the distorted rhombohedral system with space group. With increasing potassium content, the unit cell volume exhibits a broad maximum around x = 0.15. Magnetization measurements versus temperature showed that all our samples exhibit a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature TC is found to decrease from 365 K for x = 0 to 328 K for x = 0.2 as well as the saturated magnetization Msp which shifts from 3.68 μB/Mn for x = 0 to 3.05 μB/Mn for x = 0.2. The critical exponent γ defined as Msp (T) = Msp(0)[1−(T/TC)]γ is found to remain almost constant and equal to 0.33 for all our samples. The maximum of magnetic entropy changes |ΔSmax| of La0.7Sr0.3−xKxMnO3 for x = 0.05 and 0.15 is found to be respectively, 1.37 and 1.2 J kg−1 K−1 under a magnetic field change of 1 T.  相似文献   

3.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

4.
Single-phase compounds Gd3(Fe1−xTix)29 (x=0.0110.034) have been synthesized. Gd3(Fe1−xTix)29 crystallises in a monoclinic lattice with space group P21/c, and the crystal structure is refined by the Rietveld technique based on X-ray powder diffraction data. Thermomagnetic analysis indicates that the Curie temperature of the compounds ranges from 517 K to 538 K. The saturation magnetizations of the Gd3(Fe1−xTix)29 (x=0.011, 0.022, 0.034) at 1.5 K are 103.6, 102.0 and 94.3 Am2/kg, and the anisotropy fields at 1.5 K are 6.0, 6.2 and 6.4T, respectively.  相似文献   

5.
Mg2Si:Gax and Mg2Si0.6Ge0.4:Gax (x = 0.4% and 0.8%) solid solutions have been synthesized by direct melting in tantalum crucibles and hot pressing. The effect of Ga doping on the thermoelectric properties has also been investigated by measurements of thermopower, electrical resistivity, Hall coefficient and thermal conductivity in temperature range from 300 to 850 K. All samples exhibit a p-type conductivity evidenced by positive sign of both thermopower and Hall coefficient in the investigated temperatures. The maximum value of the dimensionless figure of merit ZT was reached for the Mg2Si0.6Ge0.4:Ga(0.8%) compound at 625 K (ZT ∼ 0.36). The p-type character of thermoelectric behaviours of Ga-doped Mg2Si and Mg2Si0.6Ge0.4 compounds well corroborates with the results of electronic structure calculations performed by the Korringa-Kohn-Rostoker method and the coherent potential approximation (KKR-CPA), since Ga diluted in Mg2Si and Mg2Si0.6Ge0.4 (on Si/Ge site) behaves as hole donor due to the Fermi level shifted to the valence band edge. The onset of large peak of DOS from Ga impurity at the valence band edge, well corroborates with high Seebeck coefficient measured in Ga-doped samples.  相似文献   

6.
Chunlei Wan  Zhixue Qu  Aibing Du  Wei Pan   《Acta Materialia》2009,57(16):4782-4789
Since the structural integrity of A2B2O7-type pyrochlores relies mostly on the interconnecting BO6 octahedra, Ti4+ was selected to partially substitute Zr4+ in Gd2Zr2O7 in order to distort the pyrochlore structure in order to improve the material’s thermophysical properties for potential use as high-temperature thermal insulation. As evidenced by X-ray diffraction and Raman spectroscopy studies, incorporation of Ti4+ simultaneously leads to long-range ordering of the pyrochlore structure as well as local lattice distortion. These two effects have been shown to be competitive in determining the crystal energy of the Gd2(Zr1−xTix)2O7 series and result in a minimum value of the Young’s modulus at x = 0.3 and a maximum value of the coefficient of thermal expansion at x = 0.2. At lower temperatures, the thermal conductivity of Gd2Zr2O7 was significantly reduced by Ti4+ doping, and its composition dependence was accurately modeled by taking into account the phonon scattering by mass and strain fluctuations at the B site.  相似文献   

7.
Experimental results of the single-crystal X-ray diffraction, XPS, ac-magnetic susceptibility (ac-χ), dc-magnetization M(T), and electrical resistivity (ρ) measurements for the hexagonal Th7Fe3-type Gd5Y2Pd3 single crystal are presented. Anomalies in (ac-χ), (T) and M(T)-curves have allowed to establish that Gd5Y2Pd3 undergoes a long-range ferromagnetic-type ordering at TC = 263 K, followed by a spin-reorientation below 190 K. The magnetization data indicate that there is an excess of the magnetic moment for the Gd3+ ions. The observed XPS, magnetic and electrical resistivity behaviour points to the coexistence of localized magnetism from the magnetic Gd3+ ions and itinerant ferromagnetism from 4d- and 5d-electron bands. We discuss the magnetic behaviour of the Gd7−xYxPd3 solid solutions in terms of three competitive mechanisms: RKKY-interaction, magnetic frustration and spin-fluctuation.  相似文献   

8.
The Ti5Me1−xSb2+x compounds where MeCr, Mn, Fe, Co, Ni, Cu, were synthesized and their crystal structure was determined (W5Si3 structure type, space group I4/mcm). The transport properties were investigated by means of electrical resistivity and Seebeck coefficient measurements in the temperature range 80–380 K. All the investigated compounds exhibit metallic-like type of conductivity confirmed by electronic structure calculations based on Density Functional Theory.  相似文献   

9.
A new ternary compound Al0.32ErGe2 has been synthesized and studied from 298 K to 773 K using X-ray powder diffraction technique. Its structure has been determined at room temperature by Rietveld refinement of X-ray powder diffraction data. The ternary compound Al0.32ErGe2 crystallizes in the orthorhombic with the defect CeNiSi2 structure type (space group Cmcm, a = 0.40701(2) nm, b = 1.60401(9) nm, c = 0.39240(2) nm, Z = 4 and Dcalc = 8.326 g/cm3). The average thermal expansion coefficients , and of Al0.32ErGe2 are 1.72 × 10−5 K−1, 1.11 × 10−5 K−1 and 1.52 × 10−5 K−1, respectively. The bulk thermal expansion coefficient is 4.35 × 10−5 K−1. Electrical resistivity of Al0.32ErGe2 was measured between 5 K and 300 K.  相似文献   

10.
The microstructure and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics system with ZnO additions (0.5 wt.%) investigated by the conventional solid-state route have been studied. Doping with ZnO (0.5 wt.%) can effectively promote the densification and the dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics. 0.6La(Mg1/2Ti1/2)O3–0.4Ca0.6La0.8/3TiO3 ceramics with 0.5 wt.% ZnO addition possess a dielectric constant (r) of 43.6, a Q × f value of 48,000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −1 ppm/°C sintering at 1475 °C. As the content of La(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 62,900 (GHz) for x = 0.8 is achieved at the sintering temperature 1475 °C. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

11.
The thermal expansion of U2Fe13.6Si3.4 and Lu2Fe13.6Si3.4 has been measured by X-ray powder diffraction. Both compounds exhibit a large spontaneous magnetostriction. In the ground state, the volume effect 11.2 × 10−3 in U2Fe13.6Si3.4 consists of almost equal contributions from the Fe–Fe and U–Fe exchange interactions (6 × 10−3 and 5 × 10−3, respectively). In Lu2Fe13.6Si3.4, the volume effect is 8.9 × 10−3.  相似文献   

12.
A comparative study on heterophase states in perovskite-type solid solutions of (1 − x)Pb(Mg1/3Nb2/3)TiO3xPbTiO3 is carried out for compositions near the morphotropic phase boundary. The conditions for mechanical stress relief at elastic matching of phases are analysed at x = const in a wide temperature range. The heterophase states concerned with the presence of the intermediate monoclinic phase are interpreted using the domain state–interface diagrams calculated for x = 0.28, 0.32 and 0.34. It is shown that optimum volume fraction parameters of the domains in the monoclinic phase of the B type are varied in relatively wide ranges and promote complete stress relief with cubic–monoclinic phase coexistence. Two scenarios of stress relief at x = 0.32 are considered in connection with different heterophase states (either tetragonal–monoclinic of the B type or tetragonal–monoclinic of the C type) in a wide temperature range. Possibilities of elastic matching of two polydomain phases (tetragonal–monoclinic of the B type) with almost equal relative widths of the domains in these phases are shown for x = 0.34. The active role of domains of the monoclinic phases in stress relief and forming the planar unstrained interfaces is discussed.  相似文献   

13.
A new proton conducting Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte membrane was prepared on NiO-based anode support by suspension spray followed by a co-sintering at 1400 °C for 4 h. Chemical stability test shows that this new proton conductor displays adequate chemical stability against CO2 at intermediate temperatures. The conductivity of Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ in humidified H2 is about 50% higher than that of BaCe0.6Zr0.2Gd0.16Zn0.04O3−δ from 500 to 800 °C. With La0.8Sr0.2MnO3−δ cathode, fuel cell with Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte shows 1.02 V of OCV and 354 mW/cm2 of maximum power density at 700 °C, respectively. And the cell performance did not degrade after running at least for 10 h.  相似文献   

14.
The structural, magnetic and electrical properties of (La0.70−xNdx)Sr0.30Mn0.70Cr0.30O3 perovskites (0 ≤ x ≤ 0.30) prepared by the usual ceramic procedure were investigated. Structural Rietveld refinement revealed that these compounds crystallize in a rhombohedral perovskite structure when x = 0, 0.10 and 0.20, while for x = 0.30 the structure becomes orthorhombic (Pbnm). It was found that the substitution of La by Nd reduces the Curie temperature (TC). The FC, ZFC, M(H) and AC susceptibility measurements show typical canted-antiferromagnetism for the Nd-doped samples, in which a ferromagnetic component coexists with predominant antiferromagnetic interactions. The values of the magnetization (M(H)) decrease very slightly when increasing the Nd content, compared to the undoped sample (MS values at 5 T and 2 K are, respectively, 47.9, 47.3 and 47.5 emu/g for x = 0.10, 0.20 and 0.30, compared to 48.2 emu/g for x = 0), indicating that the Nd3+ contribution is negligible compared to the total moment of the ferromagnetic (Mn/Cr) network. The resistivity increases by several orders of magnitude with Nd-doping and the semi-conducting behaviour persists in the whole temperature range. The interaction between Mn4+–O–Cr3+and Cr3+–O–Cr3+ is responsible for the semi-conducting state.  相似文献   

15.
We show that the variation of Tc in Er(Ni1−xPtx)2B2C (Tc  10.6 K and TN  5.7 K for x = 0) as a function of x proceeds in two steps: strong decrease of Tc for initial values of x (0 ≤ x < 0.10, Tc = 7.3 K at x = 0.1) and, thereafter, a relatively much weaker drop (almost a plateau) of Tc with further increase of x. TN exhibits a slight, almost linear, decrease over the entire range of x studied here; TN = 4.7 K for x = 0.2. Our results for x = 0.10 are in sharp disagreement with the results, namely, Tc < TN, as reported by Felner et al. [I. Felner, D. Schmitt, B. Barbara, C. Godart, E. Alleno, J. Solid State Chem. 133 (1997), 5].  相似文献   

16.
Three new series of Ho2−xErxMo4O15 (x = 0.0–2.0), Ho2−xSmxMo4O15 (x = 0.0–0.6) and Ho2−xCexMo4O15 (x = 0.0–0.25) solid solutions have been prepared successfully by solid-state reaction and studied by powder X-ray diffraction. All the XRD patterns of these molybdates can be indexed in monoclinic space group P21/c. Lattice parameters a, b and c of Ho2−xLnxMo4O15 decrease linearly with increasing erbium content and increase with increasing samarium or cerium content. Thermal expansion behaviors of Ho2−xLnxMo4O15 have been investigated in the 25–500 °C temperature range with high-temperature X-ray diffraction. The temperature dependence of Mo(2)–O14 interaction looks like to be responsible for their thermal expansion behaviors.  相似文献   

17.
The Y1−xYbx/2Gdx/2Ba2Cu3O7−y superconducting samples for x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were prepared by using the solid-state reaction technique. Resistivity measurements of the samples were performed in QD–PPMS system under different magnetic fields up to 5 T in zero fields cooling regime. Using the resistivity data, the upper critical magnetic field Hc2(0) at T = 0 K for 50% of Rn was calculated by the extrapolation Hc2(T) to the temperature T = 0 K. The coherence length in T = 0 K were calculated from Hc2(0) and the effects of x in the composition on both the coherence length and the upper critical magnetic field were examined. The results showed that Hc2(0) varied from 84.05 to 122.26 T with the content x. The upper critical magnetic field in the temperature T = 0 K slightly decreased with increasing the content x. Using the content x, the upper critical magnetic field can be controlled and this can be used in the superconductivity applications.  相似文献   

18.
A new calcium borate, CaB6O10, has been prepared by solid-state reactions at temperature below 750 °C. The single-crystal X-ray structural analysis showed that CaB6O10 crystallizes in the monoclinic space group P21/c with a = 9.799(1) Å, b = 8.705(1) Å, c = 9.067(1) Å, β = 116.65(1)°, Z = 4. It represents a new structure type in which two [B3O7]5− triborate groups are bridged by one oxygen atom to form a [B6O13]8− group that is further condensed into a 3D network, with the shorthand notation 6: ∞3[2 × (3:2Δ + T)]. The 3D network affords intersecting open channels running parallel to three crystallographically axis directions, where Ca2+ cations reside. The IR spectrum further confirms the presence of both BO3 and BO4 groups.  相似文献   

19.
Magnetic BaxFe3−xO4 (x  0.23) with spinel structure was fabricated by ball milling of mixture of BaCO3 and nonmagnetic α-Fe2O3 powders, and the molar ratio of BaCO3 and α-Fe2O3 is 1:6. In the milling process, a mechanochemical reaction took place between BaCO3 and α-Fe2O3, and Ba cation incorporated into α-Fe2O3 with rhombohedral structure to form a α-(Fe,Ba)2O3 solid solution. The Ba content in the α-(Fe,Ba)2O3 increased with increasing milling time, when the Ba content exceeded a limited solubility, the α-(Fe,Ba)2O3 transformed into a phase of BaxFe3−xO4 with spinel structure, where the Ba cation occupied an octahedral site or tetrahedral site. The product obtained in the balling process was different from that prepared in the annealing process at atmospheric pressure, which was BaFe2O4 with orthorhombic structure. Accompanying the crystal structure transition from α-(Fe,Ba)2O3 to BaxFe3−xO4, the magnetic properties also changed from nonmagnetism into ferromagnetism. The saturation magnetization was 53.3 emu/g and coercivity was 113.7 Oe. The mechanism of transitions of the crystal structure was discussed in the present work.  相似文献   

20.
X-ray diffraction on single crystal performed on Gd2Sc3Si4 reveals that this ternary silicide crystallizes as Gd2Sc3Ge4 in the orthorhombic Ce2Sc3Si4-type with a small deficiency in gadolinium leading to the formula Gd1.88(1)Sc3Si4. The structure is formed by [Gd2Sc3Si4] slabs with Si-Si interslab covalent bonds. The investigation of the Gd2Sc3Si4 and Gd2Sc3Ge4 compounds by magnetization, electrical resistivity and specific heat measurements reveals their antiferromagnetic behaviors; Gd2Sc3Si5 having a Néel temperature (48-52 K) higher than that observed (22-23 K) for Gd2Sc3Ge4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号