首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
SrS thin films were deposited by electron beam evaporation on heated silica substrates. The optical properties of the layers – complex refractive index and optical band gap –were derived from optical transmission spectra, measured by means of UV-VIS-NIR spectrophotometry. The influence of post-deposition annealing by rapid thermal processing (RTP) was studied. X-ray powder diffraction (XRD) was used to study the film crystal structure and preferential orientation.  相似文献   

2.
M. Zribi  B. Rezig 《Thin solid films》2008,516(7):1476-1479
Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 °C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO2 phase for the annealing temperature above 400 °C.  相似文献   

3.
Cubic cadmium sulphide (CdS) thin films with (111) preferential orientation were prepared by chemical bath deposition (CBD) technique, using the reaction between NH4OH, CdSO4 and CS(NH2)2. The films properties have been investigated as a function of bath temperature and deposition time. Structural properties of the obtained films were studied by X-ray diffraction analysis. The structural parameters such as crystallite size have been evaluated. The transmission spectra, recorded in the UV visible range reveal a relatively high transmission coefficient (70%) in the obtained films. The transmittance data analysis indicates that the optical band gap is closely related to the deposition conditions, a direct band gap ranging from 2.0 eV to 2.34 eV was deduced. The electrical characterization shows that CdS films' dark conductivities can be controlled either by the deposition time or the bath temperature.  相似文献   

4.
Fractal structure and optical properties of semicontinuous silver films   总被引:1,自引:0,他引:1  
Semicontinuous silver films, prepared by vacuum evaporation on substrate of KBr crystals, have been made with area coverage in the range 0.3–0.8. The morphology of the films were found to change with coverage p. At small or large coverage range, homogeneous films were observed, but when the coverage approaches a critical value pc (pc ≈ 0.65), the film was inhomogeneous. The topologic parameters of films such as mean size of cluster SAV, correlation length ξ and fractal dimension Df were measured. When the area coverage was close to pc, SAV and ξ rapidly diverged and a knee point appeared in the curve of Df vs. p. The transmittance of films in mid-infrared wave-band (2.5–12.5 m) was measured. For homogeneous films, as wavelength increased, transmittance increased when p < pc but decreased when p < pc. On the other hand, transmittance was wavelength independent for inhomogeneous films. The optical percolation phenomenon is observed at a region where the fractal dimension Df of the film was kept approximately constant while correlation length diverges. These experimental results were compared with existing theory and we interpret the effect of deposition and coalescence on the percolation parameters by considering the growth mechanism of a nano-structured metal film.  相似文献   

5.
Wang Zhaoyang  Sun Liyuan 《Vacuum》2010,85(3):397-399
ZnO thin films were grown on Si (1 1 1) substrates by pulsed laser deposition (PLD) at various laser repetition frequency in order to investigate the structural and optical properties of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The structural properties of the films were investigated by XRD measurement. The results suggest that films grown at 5 Hz have excellent UV emission and high-quality crystallinity. Laser repetition frequency can affect the structural and optical properties obviously. In addition, the thickness of all samples is about 200 nm and is not as expected that the film thickness was in direct proportion to laser repetition frequency. The authors think that one laser pulse is not corresponding to one growth instantaneousness. There is a growth ambience containing essential components and partial pressure in the work cavity.  相似文献   

6.
A systematic study of the influence of alumina (Al2O3) doping on the optical, electrical, and structural characteristics of sputtered ZnO thin films is reported in this study. The ZnO thin films were prepared on 1737F Corning glass substrates by R.F. magnetron sputtering from a ZnO target mixed with Al2O3 of 0-4 wt.%. X-ray diffraction (XRD) analysis demonstrates that the ZnO thin films with Al2O3 of 0-4 wt.% have a highly (002) preferred orientation with only one intense diffraction peak with a full width at half maximum (FWHM) less than 0.5°. The electrical properties of the Al2O3-doped ZnO thin films appear to be strongly dependent on the Al2O3 concentration. The resistivity of the films decreases from 74 Ω·cm to 2.2 × 10− 3 Ω·cm as the Al2O3 content increases from 0 to 4 wt.%. The optical transmittance of the Al2O3-doped ZnO thin films is studied as a function of wavelength in the range 200-800 nm. It exhibits high transparency in the visible-NIR wavelength region with some interference fringes and sharp ultraviolet absorption edges. The optical bandgap of the Al2O3-doped ZnO thin films show a short-wavelength shift with increasing of Al2O3 content.  相似文献   

7.
Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 × 10− 2 Pa (4.5 × 10− 4 Torr) of 99.9% purity.  相似文献   

8.
A. Brudnik  M. Radecka  K. Zakrzewska 《Vacuum》2008,82(10):936-941
In this work, we have chosen oxidation of TiN thin films as a feasible method for preparation of nitrogen-doped titanium dioxide thin films, TiO2:N, for photocatalytic applications. DC reactive magnetron sputtering with the plasma emission control was used for deposition of stoichiometric TiN thin films. The microstructure and chemical composition of films before and after oxidation were investigated by means of RBS, X-ray diffraction (XRD) in grazing incidence diffraction (GID) configuration, AFM and XPS techniques. The electrical conductivity was measured by the van der Pauw method as a function of the oxidation temperature. The optical transmittance and reflectance spectra of the films were measured over the visible and UV ranges of the light spectrum. GID diffraction patterns of as-sputtered TiN thin films and those after oxidation indicate that TiO2 rutile is formed at around 300 °C. Nitrogen is still present as indicated by XPS studies even when XRD detects the rutile only. Optical absorption of thin films oxidized at 450 °C is shifted towards the visible range of the light spectrum.  相似文献   

9.
The influence of annealing time and of the silver over polymer ratio on the optical properties of the silver nanoparticles embedded in a poly(vinyl alcohol) matrix has been analyzed by spectroscopic ellipsometry in the visible/near-infrared spectral domains. The complex refractive index shows a localized absorption near 420 nm which can be attributed to localized surface plasmons. An atomic force microscopy topographic analysis shows that the particles were nearly spherical with an average size less than 20 nm, as confirmed by optical transmission measurements with polarized light. The size of the particles and their number respectively decreased and increased as the annealing time of the film increased, yielding a plasmon absorption band whose intensity is correlated to the silver nanoparticles density, estimated from their nearest-neighbour distance.  相似文献   

10.
Indium tin oxide (ITO) thin films, produced by electron beam evaporation technique onto quartz substrates maintained at room temperature, are grown as nanofibers. The dependence of structural and optical properties of ITO thin films on the film thickness (99-662 nm) has been reported. The crystal structure and morphology of the films are investigated by X-ray diffraction and scanning electron microscope techniques, respectively. The particle size is found to increase with increasing film thickness without changing the preferred orientation along (2 2 2) direction. The optical properties of the films are investigated in terms of the measurements of the transmittance and reflectance determined at the normal incidence of the light in the wavelength range (250-2500 nm). The absorption coefficient and refractive index are calculated and the related optical parameters are evaluated. The optical band gap is found to decrease with the increase of the film thickness, whereas the refractive index is found to increase. The optical dielectric constant and the ratio of the free carrier concentration to its effective mass are estimated for the films.  相似文献   

11.
Searching the many papers reporting on the optical characteristics of tin oxide thin films, an obvious question arises: what is the origin of the very large differences in the reported optical and electrical properties of these films? The objective of the present work is to resolve this question by applying a modeling approach, simulating the refractive index of SnO, SnO2, SnO + SnO2, and porous tin oxide films in the visible range of the spectrum under various structure and composition conditions. Using the semi-empirical model of Wemple and DiDomenico for the dielectric function below the interband absorption edge of ionic and covalent solids, and the effective-medium theory of Bruggeman, the refractive indices of SnO, SnO2, several mixtures of SnO and SnO2 and various porous tin oxide films were calculated. The resulting data are compared with some published data to suggest the compositional and structural characteristics of the reported oxides. The correlation between the optical properties of the studied thin films and film composition is also indicated. It is proposed that the large spread in reported optical data is possibly a spread in the composition of the samples.  相似文献   

12.
A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping concentration and the grain size also has been calculated from the XRD results, decreases with increasing the doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration.  相似文献   

13.
The rapid mechanochemical synthesis of nanocrystalline CuFeS2 particles prepared by high-energy milling for 60?min in a planetary mill from copper, iron and sulphur elements is reported. The CuFeS2 nanoparticles crystallize in tetragonal structure with mean crystallite size of about 38?±?1?nm determined by XRD analysis. HRTEM study also revealed the presence of nanocrystals with the size of 5–30?nm with the tendency to form agglomerates. The Raman spectrum confirms the chalcopyrite structure. Low temperature magnetic data for CuFeS2 support the coexistence of antiferromagnetic and paramagnetic spin structure. Moreover, the hysteresis loops taken at temperatures from 5?K to 300?K revealed a presence of very small amount of ferromagnetic phase, which seems to be associated with the non-consumed elemental Fe in as-prepared nanoparticles. The optical band gap of CuFeS2 nanoparticles has been detected to be 1.05?eV, larger than band gap of the bulk material. The wider gap possibly resulted from the nano-size effect. Photoresponses of CuFeS2 nanoparticles were confirmed by I-V measurements under dark and light illumination. It was demonstrated that mechanochemical synthesis can be successfully employed in the one step preparation of nanocrystalline CuFeS2 with good structural, magnetic, optical and electrooptical properties.  相似文献   

14.
This work presents the effect of postdeposition annealing on the structural, electrical and optical properties of undoped ZnO (zinc oxide) thin films, prepared by radio-frequency sputtering method. Two samples, 0.17 and 0.32 µm-thick, were annealed in vacuum from room temperature to 350 °C while another 0.32 µm-thick sample was annealed in air at 300 °C for 1 h. X-ray diffraction analysis revealed that all the films had a c-axis orientation of the wurtzite structure normal to the substrate. Electrical measurements showed that the resistivity of samples annealed in vacuum decreased gradually with the increase of annealing temperature. For the 0.32 µm-thick sample, the gradual decrease of the resistivity was essentially due to a gradual increase in the mobility. On the other hand, the resistivity of the sample annealed in air increased strongly. The average transmission within the visible wavelength region for all films was higher than 80%. The band gap of samples annealed in vacuum increased whereas the band gap of the one annealed in air decreased. The main changes observed in all samples of this study were explained in terms of the effect of oxygen chemisorption and microstructural properties.  相似文献   

15.
Ga20Ge30Te50 thin films deposited by vacuum evaporation on various substrates have been studied for their structural and optical properties. The as-deposited amorphous films were crystallized by thermally annealing them. The optical constants of the amorphous films indicate semiconducting behaviour (n> k). The optical bandgap (Eg) determined from Tauc's plot is 0.7 eV. The change in reflectance on crystallization has been utilized to obtain maximum optical contrast by optimising the thickness of the film.  相似文献   

16.
High amount of gold nanoparticles was successfully incorporated into amorphous BaTiO3 thin films by sol-gel process. Thiourea was applied to prevent Au ions from being reduced and aggregating as the effective stabilization agents. These films exhibited unique surface plasma resonance red-shifting and particular changes of surface plasma resonance intensity with the increase of heat-treating temperature, which could be attributed to the influence of BaTiO3 ferroelectric domains. The films also exhibited superfast nonlinear optical response and larger third-order nonlinear susceptibility (3), which was attributed to hot electron contribution.  相似文献   

17.
Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/silver nanoparticles composite inks have been prepared through in situ synthesis and ultrasonic dispersion. The developed inks were proved to be suitable for various inkjet printing trials to deposit the thin films which were subsequently characterized to assess their electric and optical properties. The results have indicated that the dedoping of PSS from PEDOT during the in situ synthesis can be detrimental to the conductivity of the deposited composite films. However, the addition of silver nanoparticles to pristine PEDOT:PSS has significantly enhanced the conductivity of the thin films, with an inevitable loss in transparency. The various factors that can influence the properties of the thin films have also been analyzed and discussed. This study provides an insight into the effect of silver nanoparticles on PEDOT:PSS thin films deposited using inkjet printing process, and their properties due to the methods of ink formulation.  相似文献   

18.
The inherent optical nonlinearities of thin silver films   总被引:1,自引:0,他引:1  
Thin Ag films with the thickness of 80 Å were prepared by pulsed laser deposition technique. The films were grown on MgO(1 0 0) substrates under the nitrogen pressure of 5.0 Pa at room temperature. The surface images of the films were observed by atomic force microscopy. The linear optical properties of the films were studied in the wavelength range of 300–800 nm. The inherent third-order nonlinear optical responses coming from the silver material itself were determined by z-scan method at the wavelength of 532 nm with laser duration of 10 ns. The significant optical nonlinearities of the pure thin Ag films were determined to have the real and imaginary parts of the third-order nonlinear optical susceptibility (χ(3)) as 2.49 × 10−8 and 7.16 × 10−9 esu, respectively. The obtained χ(3) value of Ag films was about one order of magnitude larger than that of Ag colloids.  相似文献   

19.
Metal-free 1,4,8,11,15,18,22,25-octahexylphthalocyanine was prepared directly by the cyclotetramerization of 3,6-dihexylphthalonitrile using lithium butoxide in butanol. Thin films of the material were deposited on glass substrates by the thermal evaporation technique. The structure of the films was found to be in the form, and showed a strong peak indicating preferential orientation. The surface morphology of the thin films was investigated by atomic force microscopy and showed that the molecules of 1,4,8,11,15,18,22,25-octahexylphthalocyanine grow in stacks of parallel rows. The spectrophotometric measurements of transmittance and reflectance were carried out in the wavelength range 190–3000 nm. The refractive index, n, and absorption index, k, were found to be independent of annealing at 373 K. The B band absorption occurred at 356 nm, and the Q band showed a doublet at 667 and 739 nm. Other optical parameters, such as absorption coefficient and optical dielectric constant ε, were determined.  相似文献   

20.
We have investigated the electrical and optical properties of Ba(HfxTi1 − x)O3 (x = 0, 0.1, 0.2, 0.3, 0.4) (BHT) thin films deposited on platinized silicon and fused quartz substrates. Analyses of the X-ray diffraction patterns reveal that with the increase in Hf contents there is a systematic increase of the lattice constants of BHT films. Irrespective of the measurement frequencies the dielectric constants was found to be systematically decreased, whereas their frequency dispersion was found to be reduced with increasing Hf contents. The leakage current data measured using a metal-insulator–metal configuration reveal that the Schottky emission is the dominant leakage current mechanism in these films. BHT films, deposited on transparent fused quartz substrates, were also characterized in terms of their optical properties. For this purpose the transmittance of the undoped as well as Hf doped barium titanate thin films was measured as a function of wavelength in the range of 290 nm to 800 nm. The transmission spectra were analysed to estimate the wavelength dependence of the refractive indices/extinction coefficients as well as the variation of optical band gap of these films. With the increase of Hf contents, a systematic increase of the band gap [from 3.65 eV (undoped film) to 4.15 eV (40 at.% Hf doped barium titanate film)] was observed. The reduction of the leakage current with increasing hafnium substitution is discussed on the basis of an increasing Schottky barrier height and due to a simultaneous increase in the band gap of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号