首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a fast, low-power, binary carry-lookahead, 64-bit dynamic parallel adder architecture for high-frequency microprocessors. The adder core is composed of evaluate circuits and feedback reset chains implemented by self-resetting CMOS (SRCMOS) circuits with enhanced testability. A new tool, SRCMOS pulse analyzer (SPA), is developed for checking dynamic circuits for proper operation and performance. The nominal propagation delay and power dissipation of the adder were measured to be 1.5 ns (at 22°C with Vdd=2.5 V) and 300 mW. The adder core size is 1.6×0.275 mm2. The process technology used was the 0.5 μm IBM CMOS5X technology with 0.25 μm effective channel length and five layers of metal. The circuit techniques are easily migratable to multigigahertz microprocessor designs  相似文献   

2.
We have developed dual path all-N logic (DPANL) and applied it to 32-bit adder design for higher performance. The speed is significantly enhanced due to reduced capacitance at each evaluation node of dynamic circuits. The power saving is achieved due to reduced adder cell size and minimal race problem. Post-layout simulation results show that this adder can operate at frequencies up to 1.85 GHz for 0.35-/spl mu/m 1P4M CMOS technology and is 32.4% faster than the adder using all-N transistor (ANT). It also consumes 29.2% less power than the ANT adder. A 0.35-/spl mu/m CMOS chip has been fabricated and tested to verify the functionality and performance of the DPANL adder on silicon.  相似文献   

3.
This paper presents the results of a study of alternative adder architectures, a full-swing Bipolar Double Pass-Transistor adder, a new full-swing BiNMOS adder, a reduced-swing Bipolar Double Pass-Transistor adder and a reduced-swing Double Pass-Transistor BiNMOS adder, that outperform a standard CMOS adder up to three times in power-efficiency at supply voltages 1.5–3 V. The Bipolar Double Pass-Transistor adder is more power-efficient than a standard CMOS adder even at a fanout of 1. All remaining proposed adders have a lower crossover capacitance with a standard CMOS adder than the previously reported low-voltage adders. Circuits were designed and fabricated in 0.8 μm BiCMOS technology.  相似文献   

4.
A 64-bit adder in 1.5-V/0.18-μm partially depleted SOI technology, CMOS8S, and techniques to maintain performance are described. CMOS7S SOI, a 1.8-V/0.22-μm partially depleted SOI technology, achieves a 28% speed increase over bulk CMOS7S, and CMOS8S SOI delivers an additional 21%. In a 660-MHz CMOS8S SOI processor, the adder compensates for floating body effects in SOI devices which cause history effects, bipolar currents, and lower noise margins on dynamic circuits  相似文献   

5.
For the realization of digital filters in a semicustom environment, high-performance adder and multiplier modules have been developed. These modules define the performance limits for digital finite impulse response (FIR) filters. The Gate Forest semicustom environment is a sea-of-gates-type transistor array. It supports the implementation of dynamic (domino) CMOS logic circuits. The circuit-design technique is applicable to compact high-speed designs. The realized dynamic adder architecture consists of a 2-b group adder and a Manchester carry chain (MCC). For an N-b addition this results in a N/2-b carry lookahead path. This dynamic adder scheme can be expanded into 4-b group adder modules. The multiplier module is a combination of a modified Booth-coded static adder array with a final dynamic MCC adder. The multiplier is clocked with a single (symmetric) clock signal. The clock signal is divided into a precharge pulse, in which the static part of the multiplier added array is evaluated, and an evaluation phase for the generation of the multiplication result (least significant bits). A 16-b×16-b multiplier based on this architecture runs with a 40-MHz system clock. The first chips have been processed in a 2-μm CMOS double-metal technology  相似文献   

6.
A 64-bit carry look ahead adder using pass transistor BiCMOS gates   总被引:1,自引:0,他引:1  
This paper describes a 64-bit two-stage carry look ahead adder utilizing pass transistor BiCMOS gate. The new pass transistor BiCMOS gate has a smaller intrinsic delay time than conventional BiCMOS gates. Furthermore, this gate has a rail-to-rail output voltage. Therefore the next gate does not have a large degradation of its driving capability. The exclusive OR and NOR gate using the pass transistor BiCMOS gate shows a speed advantage over CMOS gates under a wide variance in load capacitance. The pass transistor BiCMOS gates were applied to full adders, carry path circuits, and carry select circuits. In consequence, a 64-bit two-stage carry look ahead adder was fabricated using a 0.5 μm BiCMOS process with single polysilicon and double-metal interconnections. A critical path delay time of 3.5 ns was observed at a supply voltage of 3.3 V. This is 25% better than the result of the adder circuit using CMOS technology. Even at the supply voltage of 2.0 V, this adder is faster than the CMOS adder  相似文献   

7.
Ruiz  G.A. 《Electronics letters》1996,32(17):1556-1557
A four-bit carry look-ahead (CLA) CMOS adder based on transistor sharing in a multi-output differential cascode voltage switch (MODCVS) logic is presented. This adder uses a new enhanced CLA unit, which enables the generation of all output carries in one single compact gate structure. Simulation results using HSPICE with CMOS 1.0 μm technology designs show that the four-bit adder proposed has 15.7% less transistors, 27.2% less silicon area, ~14% speed improvement, and a 29.1% reduction in average power consumption compared to a standard DCVS implementation  相似文献   

8.
This paper presents a new low-power high-speed fully static CMOS variable-time adder. The VLSI implementation proposed here is based on the statistical carry look-ahead addition technique. The new circuit takes advantage of an innovative way of using a composition of propagate signals and of appropriately designed overlapped execution modules to reduce average addition time, layout area, and power dissipation. A 56-bit adder designed as described here and realized using AMS 0.35-/spl mu/m CMOS standard cells at 3.3V supply voltage shows an average addition time of about 4.3 ns and a maximum power dissipation of only 50 mW at 200-MHz repetitive frequency using a silicon area of less than 0.23 mm/sup 2/.  相似文献   

9.
A new modulo 2/sup n/+1 adder architecture based on the ELM addition algorithm is introduced. A simplification to an existing modulo 2/sup n/+1 addition algorithm is also presented. VLSI implementations using 130 nm CMOS technology demonstrate the superiority of the proposed adder over existing designs in the literature.  相似文献   

10.
江耀曦  高剑 《现代电子技术》2010,33(16):72-73,76
全加器是算术运算的基本单元,提高一位全加器的性能是提高运算器性能的重要途径之一。首先提出多数决定逻辑非门的概念和电路设计,然后提出一种基于多数决定逻辑非门的全加器电路设计。该全加器仅由输入电容和CMOS反向器组成,较少的管子、工作于极低电源电压、短路电流的消除是该全加器的三个主要特征。对这种新的全加器,用PSpice进行了晶体管级模拟。结果显示,这种新的全加器能正确完成加法器的逻辑功能。  相似文献   

11.
A CMOS arithmetic logic unit is presented with a minimum number of transistors and high speed arithmetic operations. Multiple carry chain adders and a novel 1 bit adder, are used in a carry select adder. The carry chain adder has a high degree of shared gates with a low propagation delay  相似文献   

12.
This paper describes a 32-bit address generation unit designed for 4-GHz operation in 1.2-V 130-nm technology. The AGU utilizes a 152-ps sparse-tree adder core to achieve 20% delay reduction, 80% lower interconnect complexity, and a low (1%) active energy leakage component. The dual-V/sub T/ semidynamic implementation of the adder core provides the performance of a dynamic CMOS design with an average energy profile similar to static CMOS, enabling 71% savings in average energy with a good sub-130-nm scaling trend.  相似文献   

13.
This paper presents a novel low-power majority function-based 1-bit full adder that uses MOS capacitors (MOSCAP) in its structure. It can work reliably at low supply voltage. In this design, the time-consuming XOR gates are eliminated. The circuits being studied are optimized for energy efficiency at 0.18-μm CMOS process technology. The adder cell is compared with seven widely used adders based on power consumption, speed, power-delay product (PDP) and area efficiency. Intensive simulation runs on a Cadence environment and HSPICE show that the new adder has more than 11% in power savings over a conventional 28-transistor CMOS adder. In addition, it consumes 30% less power than transmission function adder (TFA) and is 1.11 times faster.  相似文献   

14.
Reversible logic has received much attention in recent years when calculation with minimum energy consumption is considered. Especially, interest is sparked in reversible logic by its applications in some technologies, such as quantum computing, low-power CMOS design, optical information processing and nanotechnology. This article proposes two new reversible logic gates, ZRQ and NC. The first gate ZRQ not only implements all Boolean functions but also can be used to design optimised adder/subtraction architectures. One of the prominent functionalities of the proposed ZRQ gate is that it can work by itself as a reversible full adder/subtraction unit. The second gate NC can complete overflow detection logic of Binary Coded Decimal (BCD) adder. This article proposes two approaches to design novel reversible BCD adder using new reversible gates. A comparative result which is presented shows that the proposed designs are more optimised in terms of number of gates, garbage outputs, quantum costs and unit delays than the existing designs.  相似文献   

15.
提出了一种新的准静态单相能量回收逻辑,其不同于以往的能量回收逻辑,真正实现了单相功率时钟,且不需要任何额外的辅助控制时钟,不但降低了能耗,更大大简化了时钟树的设计.该逻辑还可以达到两相能量回收逻辑所具有的速度.设计了一个8位对数超前进位加法器,并分别用传统的静态CMOS逻辑、钟控CMOS绝热逻辑(典型的单相能量回收逻辑)和准静态单相能量回收逻辑实现.采用128组随机产生的输入测试向量的仿真结果表明:输入频率为10MHz时,准静态能量回收逻辑的能耗仅仅是传统静态CMOS逻辑的45%;当输入频率大于2MHz时,可以获得比时钟控CMOS绝热逻辑更低的能耗.  相似文献   

16.
The general objective of our work is to investigate the area and power-delay performances of low-voltage full adder cells in different CMOS logic styles for the predominating tree structured arithmetic circuits. A new hybrid style full adder circuit is also presented. The sum and carry generation circuits of the proposed full adder are designed with hybrid logic styles. To operate at ultra-low supply voltage, the pass logic circuit that cogenerates the intermediate XOR and XNOR outputs has been improved to overcome the switching delay problem. As full adders are frequently employed in a tree structured configuration for high-performance arithmetic circuits, a cascaded simulation structure is introduced to evaluate the full adders in a realistic application environment. A systematic and elegant procedure to scale the transistor for minimal power-delay product is proposed. The circuits being studied are optimized for energy efficiency at 0.18-/spl mu/m CMOS process technology. With the proposed simulation environment, it is shown that some survival cells in stand alone operation at low voltage may fail when cascaded in a larger circuit, either due to the lack of drivability or unsatisfactory speed of operation. The proposed hybrid full adder exhibits not only the full swing logic and balanced outputs but also strong output drivability. The increase in the transistor count of its complementary CMOS output stage is compensated by its area efficient layout. Therefore, it remains one of the best contenders for designing large tree structured arithmetic circuits with reduced energy consumption while keeping the increase in area to a minimum.  相似文献   

17.
李舜  周锋  陈春鸿  陈华  吴一品 《半导体学报》2007,28(11):1729-1734
提出了一种新的准静态单相能量回收逻辑,其不同于以往的能量回收逻辑,真正实现了单相功率时钟,且不需要任何额外的辅助控制时钟,不但降低了能耗,更大大简化了时钟树的设计.该逻辑还可以达到两相能量回收逻辑所具有的速度.设计了一个8位对数超前进位加法器,并分别用传统的静态CMOS逻辑、钟控CMOS绝热逻辑(典型的单相能量回收逻辑)和准静态单相能量回收逻辑实现.采用128组随机产生的输入测试向量的仿真结果表明:输入频率为10MHz时,准静态能量回收逻辑的能耗仅仅是传统静态CMOS逻辑的45%;当输入频率大于2MHz时,可以获得比时钟控CMOS绝热逻辑更低的能耗.  相似文献   

18.
Clock-delayed (CD) domino is a self-timed dynamic logic family developed to provide single-rail gates with inverting or noninverting outputs. CD domino is a complete logic family and is as easy to design with as static CMOS circuits from a logic design and synthesis perspective. Design tools developed for static CMOS are used as part of a methodology for automating the design of CD domino circuits. The methodology and CD domino's characteristics are demonstrated in the design of a 32-b carry look-ahead adder. The adder was fabricated with MOSIS's 0.8-μm CMOS process with scalable CMOS design rules that allow a 1.0-μm drawn gate length. Measurements of the adder show a worst case addition of 2.1 ns. The CD domino adder is 1.6× faster than a dual-rail domino adder designed with the same cell library and technology  相似文献   

19.
A self-controllable voltage level (SVL) circuit which can supply a maximum dc voltage to an active-load circuit on request or can decrease the dc voltage supplied to a load circuit in standby mode was developed. This SVL circuit can drastically reduce standby leakage power of CMOS logic circuits with minimal overheads in terms of chip area and speed. Furthermore, it can also be applied to memories and registers, because such circuits fitted with SVL circuits can retain data even in the standby mode. The standby power of an 8-bit 0.13-/spl mu/m CMOS ripple carry adder (RCA) with an on-chip SVL circuit is 8.2 nW, namely, 4.0% of that of an equivalent conventional adder, while the output signal delay is 786 ps, namely, only 2.3% longer than that of the equivalent conventional adder. Moreover, the standby power of a 512-bit memory cell array incorporating an SVL circuit for a 0.13-/spl mu/m 512-bit SRAM is 69.1 nW, which is 3.9% of that of an equivalent conventional memory-cell array. The read-access time of this 0.13-/spl mu/m SRAM is 285 ps, that is, only 2 ps slower than that of the equivalent SRAM.  相似文献   

20.
A multiplier architecture and encoding scheme well suited for programmable digital filtering applications is described. The multiplier's partial product recoding scheme uses only simple multiplexers and takes advantage of a RAM that stores filter coefficients. We use an optimized 20-transistor full-adder cell in the carry-save adder array, and a carry-select vector-merge adder produces the final output. An integrated circuit comprising an ll-b by ll-b multiplier using second-order recoding has been fabricated in 2-μm CMOS technology. It operates in 22 ns and its core occupies 1.53 mm2. Also, an ll-b by 16-b multiplier using third-order recoding has been fabricated through MOSIS in 1.2-μm CMOS technology. Its core occupies 0.9 mm2 and it operates in 19 ns  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号