首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is considerable evidence that the basolateral complex of the amygdala (ABL) is involved in learning about the motivational value of otherwise neutral stimuli. The authors examined the role in this function of the ABL and one of its major efferent structures, the nucleus accumbens. Male Long-Evans rats received either sham, ipsilaterally. or contralaterally placed unilateral lesions of the ABL and accumbens and were trained in an appetitive Pavlovian second-order conditioning task. Sham-lesioned and ipsilaterally lesioned rats acquired the task normally, but contralaterally lesioned rats, in which the ABL and accumbens were functionally disconnected, failed to acquire second-order conditioned responses (although they did acquire second-order conditioned orienting responses). The results suggest that the ABL and accumbens are part of a system critical for processing information about learned motivational value. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
High responders (HR) and low responders (LR) to novelty coexisting in a normal Wistar rat population were used to examine the effects of combined noradrenergic injections into the basolateral amygdala (BLA) and nucleus accumbens (ACC) on gustatory neophobia in a novel environment. During novelty, HR were marked by a high and LR by a low functional noradrenergic activity in ACC. Water-treated HR and LR mostly consumed familiar rat chow, indicating a high level of neophobia. The effects of BLA injections with noradrenergic agents differed completely between rat types. Propranolol, a β-adrenergic antagonist, reduced neophobia in HR, but was ineffective in LR, whereas the respective agonist isoproterenol decreased neophobia only in LR. Subsequent ACC injections of noradrenergic agents modulated the effects of the noradrenergic BLA injections on neophobia in line with the theory of amygdala-accumbens gating of information (A. R. Cools et al, 1991). (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Afferents from the basolateral amygdala and dopamine projections from the ventral tegmental area to the nucleus accumbens have both been implicated in reward-related processes. The present study used in vivo chronoamperometry with stearate-graphite paste electrodes in urethane-anaesthetized rats to determine how basolateral amygdala efferents to the nucleus accumbens synaptically regulate dopamine efflux. Repetitive-pulse (20 Hz for 10 s) electrical stimulation of the basolateral amygdala evoked a complex pattern of changes in monitored dopamine oxidation currents in the nucleus accumbens related to dopamine efflux. These changes were characterized by an initial increase that was time-locked to stimulation, a secondary decrease below baseline, followed by a prolonged increase in the dopamine signal above baseline. The effects of burst-patterned stimulation (100 Hz, 5 pulses/burst, 1-s interburst interval, 40 s) of the basolateral amygdala on the basal accumbens dopamine signal were similar to those evoked by 20 Hz stimulation, with the lack of a secondary suppressive component. Infusions of the ionotropic glutamate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid (APV) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the nucleus accumbens dose-dependently blocked or attenuated the initial and prolonged increases in the dopamine signal following 20 Hz or burst-patterned basolateral amygdala stimulation. Infusions of the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine selectively blocked the intermediate suppressive effect of 20 Hz basolateral amygdala stimulation on dopamine oxidation currents. Blockade of glutamate receptors or inhibition of dopamine neuronal activity via infusions of either APV + DNQX, lidocaine or gamma-hydroxybutyric acid, respectively, into the ventral tegmental area did not effect the pattern of changes in the accumbens dopamine signal evoked by basolateral amygdala stimulation. These data suggest that the glutamatergic basolateral amygdala inputs to nucleus accumbens dopamine terminals synaptically facilitate or depress dopamine efflux, and these effects are independent of dopamine neuronal firing activity. Moreover, these results imply that changes in nucleus accumbens dopamine levels following presentation of reward-related stimuli may be mediated, in part, by the basolateral amygdala.  相似文献   

4.
In this study, the authors tested the hypothesis that the basolateral amygdala (BLA), orbitofrontal cortex (OFC), nucleus accumbens core (NA-core), and the extended hippocampus mediate different aspects of the development-maintenance of unique reward expectancies produced by the differential outcomes procedure (DOP). Rats were trained with either DOP or a nondifferential outcomes procedure (NOP) on a simple discrimination task. Fornix lesions did not affect either version of the task, demonstrating that the extended hippocampal system has no role in stimulus-outcome (S-O) associations. In contrast, in the DOP condition, BLA lesions impaired performance throughout training, OFC lesions impaired choice accuracy only in the later maintenance phase, and NA-core lesions resulted in enhanced learning. These results suggest that BLA and OFC are important for establishment (BLA) and behavioral maintenance (OFC) of S-O associations, whereas the NA-core is not needed and can in fact impede using multiple S-O associations. No impairments were observed in the NOP condition, demonstrating that these structures are not critical to stimulus-response learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Red nucleus stimulation inhibits within the inferior olive. J. Neurophysiol. 80: 3127-3136, 1998. In the anesthetized cat, electrical stimulation of the magnocellular red nucleus (RNm) inhibits responses of rostral dorsal accessory olive (rDAO) neurons to cutaneous stimulation. We tested the hypothesis that RNm-mediated inhibition occurs within the inferior olive by using stimulation of the ventral funiculus (VF) of the spinal cord in place of cutaneous stimulation of the hindlimb. Fibers in the VF terminate on hindlimb rDAO neurons, so inhibition of this input would have to occur within the olive. rDAO responses elicited by VF stimulation were inhibited by prior stimulation of the RNm, indicating that inhibition occurs within the olive. In contrast, evoked potentials recorded from the VF or dorsal columns following hindlimb stimulation were not affected by prior stimulation of RNm, indicating that stimulation of the RNm does not inhibit olivary afferents at spinal levels. RNm stimulation that inhibited rDAO responses had little effect on evoked somatosensory responses in thalamus, indicating that inhibition generated by activity in RNm may be specific to rDAO. To test limb specificity of RNm-mediated inhibition, conditioning stimulation was applied to the dorsolateral funiculus at thoracic levels, which selectively activates RNm neurons projecting to the lumbar cord. Stimulation at thoracic levels inhibited evoked responses from hindlimb but not forelimb regions of rDAO, suggesting that inhibitory effects of RNm activity are limb specific. Several studies have reported that olivary neurons have reduced sensitivity to peripheral stimulation during movement; it is likely that RNm-mediated inhibition occurring within the olive contributes to this reduction of sensitivity. Inhibition of rDAO responses by descending motor pathways appears to be a salient feature of olivary function.  相似文献   

7.
We investigated the effect of high-frequency stimulation of the basolateral amygdala (BLA) on the induction of long-term potentiation (LTP) in the medial perforant path (PP)-dentate gyrus (DG) synapses of anesthetized rats. A conditioning stimulation (100 pulses at 100 Hz) of the ipsilateral BLA did not change the DG synaptic potential. However, when the BLA conditioning stimulation was applied at the same time as a weak tetanic stimulation of PP (20 pulses at 20 Hz) which alone did not induce LTP, robust DG LTP was induced. Simultaneous application of contralateral BLA stimulation and PP weak tetanus did not induce LTP. Moreover, the ipsilateral BLA stimulation enhanced the magnitude of LTP induced by a moderate tetanic stimulation of PP (30 pulses at 60 Hz), but did not further enhance the LTP induced by a strong tetanic stimulation of PP (100 pulses at 100 Hz). These results suggest that the ipsilateral BLA neurons modulate the induction of DG LTP in vivo.  相似文献   

8.
The electrophysiological properties, the response to cholinergic agonists and the morphological characteristics of neurons of the basolateral complex were investigated in rat amygdala slices. We have defined three types of cells according to the morphological characteristics and the response to depolarizing pulses. Sixty-six of the recorded cells (71%) responded with two to three action potentials, the second onwards having less amplitude and longer duration (burst). In a second group, consisting of 21 cells (22%), the response to depolarization was a train of spikes, all with the same amplitude (multiple spike). Finally, seven neurons (7%) showed a single action potential (single spike). Burst response and multiple-spike neurons respond to the cholinergic agonist carbachol (10-20 microM) with a depolarization that usually attained the level of firing. This effect was accompanied by decreased or unchanged input membrane resistance and was blocked by atropine (1.5 microM). The depolarizing response to superfusion with carbachol occurred even when synaptic transmission was blocked by tetrodotoxin, indicating a direct effect of carbachol. Similarly, the depolarization by carbachol was still present when the M-type conductance was blocked by 2 mM Ba2+. The carbachol-induced depolarization was prevented by superfusion with tetraethylammonium (5 mM). Injection of biocytin into some of the recorded cells and subsequent morphological reconstruction showed that "burst" cells have piriform or oval cell bodies with four or five main dendritic trunks; spines are sparse or absent on primary dendrites but abundant on secondary and tertiary dendrites. This cellular type corresponds to a pyramidal morphology. The "multiple-spike" neurons have oval or fusiform somata with four or five thick primary dendritic trunks that leave the soma in opposite directions; they have spiny secondary and tertiary dendrites. Finally, neurons which discharge with a "single spike" to depolarizing pulses are round with four or five densely spiny dendrites, affording these neurons a mossy appearance. The results indicate that most of the amygdaloid neurons respond to carbachol with a depolarization. This effect was concomitant with either decrease or no change in the membrane input resistance and was not blocked by the addition of Ba2+, an M-current blocker, indicating that a conductance pathway other than K+ is involved in the response to carbachol.  相似文献   

9.
The carcinogenic effects of diisopropanolinitrosamine (DIPN) were tested in Sprague-Dawley rats and were then compared with results produced earlier by the same substance in Syrian hamsters. In addition to the similarities, several differences were noted; for example, DIPN caused pancreatic tumors in all the hamsters, but only 1 pancreatic tumor was observed among the 150 rats. Administration of DIPN to rats led to the development of neoplasms in the nasal and paranasal cavities, lungs, thyroid gland, esophagus, liver, and kidneys. The highest tumor incidence in rats was in the nasal cavities. Almost all the pulmonary neoplasms were malignant and were usually squamous cell carcinomas. We found a 15.4-50% incidence of malignant tumors of the thyroid gland; we also noted that thyroid neoplasms occurred at almost the same rate (36.4-50%) in the groups given 1/5, 1/10, and 1/20 the median lethal dose.  相似文献   

10.
Recent advances have permitted recording of evoked potentials (EPs) in response to electrical and mechanical stimulation of the gastrointestinal (GI) organs via methods used primarily in clinical neurophysiology. Current research involving stimulation of the esophagus, rectum, and colon, and recording the corresponding responses on the scalp, is being practiced in only a few laboratories. This review examines the engineering aspects of recording EPs, such as characteristics of the stimuli, placement of stimulus electrodes in the GI tract, and enhancement of evoked potential signals. We also discuss the physiological concepts involved in the generation of EPs, and how these compare with somatosensory evoked responses. Current experimental techniques employed by various investigators and results reported from their laboratories are compared. We believe that cerebral EPs to GI stimulation could be useful in studying a number of pathophysiological conditions such as gastroesophageal reflux disease, diffuse esophageal spasm, chronic inflammatory bowel disorders, chronic abdominal pain, and irritable bowel syndrome, among others. We hope that the present review will generate interest in the use of EPs arising out of GI stimulation, aiding in understanding their physiological implications in healthy subjects and in GI disorders.  相似文献   

11.
1. An ethological approach was combined with intracerebral infusions of amphetamine to broaden understanding of how this drug acts on mesolimbic neuronal systems to alter behavior. 2. Rats, tested in sets of three, were allowed to interact with each other or with various novel objects in an open-field arena. Specific behavioral responses were assessed and grouped into several broad categories: motivation (movement directed toward novel objects), social (movement involving contact with other rats), and motor (movement without obvious direction toward environmental stimuli) as well as no movement (quiet rest). 3. Infusion of d-amphetamine (10 micrograms/microliter) into either the amygdala or nucleus accumbens elevated motor behavior relative to control rats in the set, but only amygdaloid infusions also increased the motivation score. Intra-amygdaloid clozapine or haloperidol blocked the increase in this score, but only clozapine also blocked the motor effects of intra-amygdaloid amphetamine. 4. Although neither neuroleptic in the accumbens blocked the amphetamine-induced increase in the motor category, both clozapine and haloperidol lowered the motivation score below the amphetamine level. 5. The results suggest a role for the amygdala in the motivational component of amphetamine-induced behavioral effects. Both neuroleptics, moreover, appear to reverse this component perhaps by acting via either amygdaloid or accumbal mechanisms. Although follow-up studies are warranted, a neuroethological approach is likely to shed new light on the neuronal systems underlying the complex behavioral changes induced by amphetamine and related stimulants.  相似文献   

12.
The present study was designed to further investigate the nature of feeding induced by opioid stimulation of the nucleus accumbens through an examination of the effects of intra-accumbens (ACB) opioids on macronutrient selection. In 3-hr tests of free-feeding (satiated) rats, intra-ACB administration of the mu receptor agonist D-Ala2,N,Me-Phe4, Gly-ol5-enkephalin (DAMGO; 0, 0.025, 0.25 and 2.5 micrograms bilaterally) markedly enhanced the intake of fat or carbohydrate when the diets were presented individually (although the effect on fat intake was much greater in magnitude). Intra-ACB injections of DAMGO, however, produced potent preferential stimulatory effects on fat ingestion with no effect on carbohydrate ingestion when both fat and carbohydrate diets were present simultaneously. Moreover, this selective stimulation of fat intake was independent of base-line diet preference and could be blocked by systemic injection of naltrexone (5 mg/kg). We also examined the effect of 24-hr food deprivation on the pattern of macronutrient intake in rats with access to both carbohydrate and fat. In contrast to the DAMGO-induced selective enhancement of fat intake, food deprivation significantly increased the intake of both diets to the same extent; however, in this case, only the stimulated fat intake was blocked by systemic naltrexone. Intra-ACB administration of DAMGO in hungry rats produced an effect similar to that observed in free-feeding rats; preference was strongly shifted to fat intake. Similarly, the opioid antagonist naltrexone (20 micrograms) infused directly into ACB preferentially decreased fat intake in hungry rats. These findings suggest that endogenous opioids within the ventral striatum may participate in the mechanisms governing preferences for highly palatable foods, especially those rich in fat.  相似文献   

13.
14.
The pH sensitive dye, Neutral Red, was used with optical imaging techniques to map intracellular pH shifts elicited by cortical surface stimulation of the rat cerebellum. In the in vivo rat cerebellar cortex stained with Neutral Red, a brief stimulus train (three stimuli at 33 Hz) evoked a longitudinal beam of increased fluorescence (acidic shift) running parallel to the long axis of the folium within 100 ms of stimulation onset. A 5-10 s stimulus train (5-20 Hz) produced a biphasic optical response consisting of a beam of increased fluorescence (acidic shift) which returned to baseline in approximately 60 s, followed by a beam of decreased fluorescence (alkaline shift) for up to 120 s. A close spatial correspondence was observed between electrophysiological and optical maps of the response to surface stimulation. Application of acetazolamide enhanced the optical signals, acetabenzolamide-phenoxyethene had no effect, and the glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, decreased the optical signals. Increased fluorescence was produced by superfusion of the cerebellar cortex with acidic Ringer solutions and a decrease in fluorescence by basic solutions. These fluorescence changes also occurred in the presence of several ion channel/receptor blockers. Increased fluorescence resulted from superfusion with Ringer solution containing sodium propionate and decreased fluorescence with the transition from 5% carbon dioxide to nominally carbon dioxide-free Ringer solution. Recovery from acid loading with ammonium chloride was prevented by amiloride, an inhibitor of the Na+/H+ transporter. Application of Ringer solution with high potassium concentration produced an increase in fluorescence but only a decrease in fluorescence was detected when neuronal blockers were present, an effect consistent with a glial contribution. This decrease in fluorescence was blocked by adding barium. No epifluorescent optical signals were obtained from unstained preparations or preparations stained with cell-permeant fluorescence markers, suggesting little contribution from activity-dependent volume changes and other intrinsic signals. These results demonstrate that the Neutral Red optical signals evoked by cerebellar surface stimulation are primarily pH based and include a significant component related to intracellular pH shifts. The large amplitudes of these optical signals are particularly useful for mapping neuronal activity. Furthermore, this technique provides a novel tool for the study of pH changes in vivo at both high spatial and temporal resolution.  相似文献   

15.
Reports from previous works has given different classifications for the nucleus accumbens. There also appears to be a general lack of information regarding the fiber connections of the nucleus. The present investigation was undertaken to clarify the connections of this structure. Silver impregnation methods were used to discern some of the afferent fibers of the nucleus, and autoradiographic techniques were used to locate target areas of efferent projections. Afferents were found to be predominately from the septum. Other sources of possible afferents were the mid cingulate gyrus and the ventral nucleus of the diagonal band. No argyrophilia was observed in the nucleus accumbens following transection of the fornix body, lesions of the anterior orbital frontal cortex or anterior cingulate gyrus. On the basis of grain counts made from autoradiographic studies, the nucleus accumbens projects predominately to the lateral hypothalamus. Counts above background were found in the cingulate gyrus, septum, ventral nucleus of the diagonal band, midline thalamic nuclei, habenula, caudate and substantia nigra. Thus, efferent projections appear to distribute to both limbic and extrapyramidal structures. Considering these connections and the functions reported by various workers the nucleus accumbens may serve as bridge between limbic and extrapyramidal motor systems effecting limbic influence in some movements.  相似文献   

16.
17.
It is known that lateral hypothalamic stimulation or self-stimulation can release dopamine in the nucleus accumbens (NAc). The present experiment illustrates that an aversively motivated behavior can also do this. Rats were prepared with microdialysis probes in the NAc and electrodes in the lateral hypothalamus (LH) or medial hypothalamus (MH). Automatic stimulation of the LH increased extracellular dopamine in the NAc 30% as reported earlier. The animals would perform both self-stimulation to turn the current on and stimulation-escape to turn it off, suggesting a combination of reward and aversion. Escape responding increased extracellular dopamine (DA) 100%, even though there was less total stimulation. Automatic stimulation of the MH did the opposite of the LH by decreasing accumbens dopamine (-20%), and the animals would only perform stimulation-escape, indicative of pure aversion. But again, extracellular DA in the NAc increased 100% during escape responding. Thus DA can be released during negative reinforcement when an animal's behavior is reinforced by escape from lateral or medial hypothalamic stimulation. This suggests that DA release was correlated with stimulation-escape behavior, rather than the aversiveness of automatic stimulation.  相似文献   

18.
In the present study, we examined the effects of dopamine (DA) receptor antagonists infused into the nucleus accumbens septi (NAS) on analgesia induced by intra-ventral tegmental area (VTA) infusions of the substance P (SP) analog, DiMe-C7 or morphine and intra-NAS infusions of amphetamine. Rats received intra-NAS infusions of either the mixed DA receptor antagonist flupenthixol (1.5 or 3.0 microg/0.5 microl/side; DiMe-C7 only), the DA D1/D5 receptor antagonist SCH 23390 (0.1 microg/0.5 microl/side; DiMe-C7 only) or the DA D2-type receptor antagonist raclopride (1.0, 3.0 or 5.0 microg/0.5 microl/side). Ten minutes later, rats received intra-VTA infusions of DiMe-C7 (3.0 microg/0.5 microl/side) or morphine (3.0 microg/0.5 microl/side) or intra-NAS infusions of amphetamine (2.5 microg/0.5 microl/side). Animals were then administered the formalin test for tonic pain. Intra-NAS raclopride prevented analgesia induced by intra-VTA DiMe-C7, intra-VTA morphine and intra-NAS amphetamine. Similarly, intra-NAS flupenthixol or SCH 23390 attenuated the analgesia induced by intra-VTA DiMe-C7. These findings suggest that tonic pain is inhibited, at least in part, by enhanced DA released from terminals of mesolimbic neurons. Furthermore, the evidence that SP and opioids in the VTA mediate stress-induced analgesia suggests that the pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, pain or both.  相似文献   

19.
Blockade of gamma-aminobutyric acid (GABAA) receptors in the anterior basolateral amygdala (BLA) with bicuculline methiodide results in an increase in heart rate, blood pressure and "anxiety" in rats. Glutamate receptors in the BLA are also reported to be involved in eliciting anxiety responses. The purpose of this study was to investigate the interaction between GABAergic inhibition and glutamatergic excitation in the BLA. Male Wistar rts were implanted with femoral arterial catheters and bilateral chronic microinjection cannulae into the BLA. Each animal was injected with either artificial cerebrospinal fluid (100 nl), bicuculline methiodide (10 pmol/100 nl) or bicuculline methiodide + one dose of an antagonist of either the N-methyl-D-aspartate receptor [AP5 (20 and 100 pmol) and dizocilpine (25 and 125 pmol)] or the non-N-methyl-D-aspartate ionotropic receptor [CNQX (10 and 50 pmol) and GYKI 52466 (50 and 250 pmol)]. Increases in heart rate, blood pressure and "anxiety" (as measured in the social interaction test) observed in rats after bicuculline methiodide injections into the BLA were blocked in a dose dependent manner with the concurrent injections of either N-methyl-D-aspartate or non-N-methyl-D-aspartate antagonists, suggesting that activation of both subtypes of glutamate ionotropic receptors may be necessary for the responses elicited by GABAA receptor blockade in the basolateral amygdala.  相似文献   

20.
Small lesions of the dorsomedial amygdala reduced the magnitude of the conditioned place aversion produced by naltrexone-precipitated morphine withdrawal, whereas large lesions of the ventral nucleus accumbens had no effect. This finding that the dorsomedial amygdala, which has not been implicated in opiate reward, is involved in mediating the aversiveness of opiate withdrawal is consistent with data indicating that amygdala lesions reduce the aversiveness of a variety of aversive events. In contrast, the nucleus accumbens, which is involved in mediating the rewarding effects of opiates, does not appear to be critically involved in mediating the aversive effects of opiate withdrawal. Together, these findings suggest that the neural structures that mediate the rewarding effects of opiates may be at least partially distinct from the structures that mediate the aversive effects of opiate withdrawal. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号