首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Poly(phenylene ether)s (PPE) are a class of polymers which contain phenolic monomers attached via an ether linkage. Depending upon the monomer types used in the polymerization, a variety of homopolymers and copolymers can be produced. When compounded with polystyrene, these poly(phenylene ether)s combine to form single phase alloys in contrast to the separate phases obtained with most other polymer blends. Since polyphenylene ether and polystyrene are completely miscible, the alloy also has only one glass transition temperature (Tg) and behaves in a manner that is typical of single polymeric materials. By blending poly(phenylene ether)s with impact modified polystyrene at different ratios, opaque thermoplastic resins having a wide range of chemical, thermal, and mechanical properties can be manufactured. Commercially available material grades have thus been developed to meet special product requirements for flame retardancy, high impact, increased flexural and tensile strength, low creep, and good resistance to certain chemical environments. In comparison to other types of unfilled thermoplastics, poly(phenylene ether)s have a balance of properties which can overlap those of acrylonitrile-butadiene-styrene (ABS), polycarbonate, nylon, and other high performance polymers.  相似文献   

2.
Dielectric and viscosity techniques were used to determine the degree of the compatibility of poly(methyl methacrylate)/polycarbonate, poly(methyl methacrylate)/ polystyrene, and polycarbonate/polystyrene blends in different ratios (25/75, 50/50, and 75/25 w/w). The effect of the addition of 5, 10, and 20% concentrations of the prepared polyester resin [poly(butylene terephthalate adipate)] on the compatibility of these blends was studied. The dielectric properties were measured over a frequency range (from 100 Hz to 100 kHz) at various temperatures covering the glass‐transition temperatures of the polymers used (from 30 to 170°C). It was found from the dielectric and viscosity measurements that the addition of 10% polyester to poly(methyl methacrylate)/polycarbonate, 20% polyester to poly(methyl methacrylate)/polystyrene, and 5% polyester to polycarbonate/polystyrene blends enhanced the degree of compatibility of such blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   

4.
The mechanical performance of immiscible blends of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) and poly(styrene-co-acrylonitrile) (SAN) and the subsequent influence of compatibilisation by tailored polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock terpolymers (SBM) on the mechanical performance under static and dynamic loads is analysed in detail. A PPE/SAN 60/40 blend was selected as a base system for the compatibilisation experiments. The observed static tensile behaviour is described by micromechanical models and correlated to the blend microstructures as observed by transmission electron microscopy. In most cases, the addition of the SBM triblock terpolymers further enhances the ductility of the blend while only leading to a minor reduction of modulus and strength. Triblock terpolymers with symmetric end blocks, mainly located at the interface between PPE and SAN, led to nearly isotropic specimens. In contrast, SBM materials with a longer polystyrene block predominantly formed micelles in the PPE phase and the blends revealed a highly anisotropic morphology. Comparative investigations of the fatigue crack growth behaviour parallel to the direction of injection also reflected this variation in mechanical anisotropy of the compatibilised blends. A poor toughness and a predominant interfacial failure were observed in the case of the SBM with a long polystyrene block. In contrast, a considerable improvement in properties as a result of pronounced plastic deformations was observed for blends compatibilised by triblock terpolymers with symmetric end blocks. The systematic correlation between morphology and mechanical performance of compatibilised PPE/SAN blends established in this study provides an efficient way for the desired selection of suitable and effective compatibilising agents, ensuring both a superior multiaxial toughness as well as a high strength and modulus of the overall system.  相似文献   

5.
A large number of studies have been devoted in recent years to the miscibility behavior of linear polyesters with chlorinated polymers, including poly(vinyl chloride) (PVC), chlorinated PVC, chlorinated poly(ethylenes), and copolymers of vinylidene chloride (Saran). However, similar studies with aromatic polyesters are lacking. It is the purpose of this paper to compare the properties of blends made of poly(ethylene terephthalate), poly(butylene terephthalate) or poly(hexamethylene terephthalate) and of various chlorinated polymers. It is shown that a high concentration of chlorine atoms is required to achieve miscibility. Moreover, there is a “miscibility window” in terms of the carbonyl concentration of polyesters, immiscibility being found for carbonyl concentrations outside this window, A similar behavior was observed before for linear polyester/chlorinated polymer blends and for polyester/polycarbonate blends. Solid state small-angle light scattering experiments were also conducted to follow the morphology of the blends as a function of composition. Spherulites were found but their size vary with composition.  相似文献   

6.
Y.J. Wang 《Polymer》2010,51(11):2345-2350
Star polymers with a hydrophobic cholane core and four poly(ethylene glycol) (PEG) arms, CA(EGn)4, have been synthesized by anionic polymerization. Pulsed-gradient spin-echo NMR spectroscopy was used to study the diffusion behavior of the star polymers, ranging from 1000 to 10,000 g/mol, in aqueous solutions and gels of poly(vinyl alcohol) (PVA) at 23 °C. The star polymers have a lower self-diffusion coefficient than linear PEGs at equivalent hydrodynamic radius. In water alone, the star polymers and their linear homologues have a similar diffusion behavior in the dilute regime, as demonstrated by the similar concentration dependence of the self-diffusion coefficients. In the semidilute regime, the star polymers tend to aggregate due to their amphiphilic properties, resulting in lower self-diffusion coefficients than those of linear PEGs. 1H NMR T1 measurements at 10-70 °C revealed that the PEG arms of the star polymers are more mobile than the core, suggesting the star polymers in solution have a conformation similar to that of poly(propylene imine) dendrimers.  相似文献   

7.
Butadiene‐rubber toughened styrene polymers, such as acrylonitrile‐butadiene‐styrene (ABS) copolymer and high impact polystyrene (HIPS), are noncharring polymers. They are generally blended with polycarbonate (PC) or polyphenyleneether (PPE), which are char forming polymers, to improve char forming ability for styrenic blends containing conventional phosphate flame retardants. To achieve cost effective flame retardant system, PET was selected as a potential char‐source for ABS blends through the thermogravimetric analysis (TGA) and chemical structure analysis of various polymers. PET may contribute to the enhancement of flame retardancy of ABS/PET blends, especially in the presence of small amounts of phenol novolac (PN). The effective flame retardancy of this system is believed to be accomplished through the enhancement of interchain reactions by PN. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000  相似文献   

9.
Owing to their low polydispersity and their well controlled molecular architecture, 3-arms stars polystyrenes made by anionic synthesis are suitable models to study the solution properties of long chain branched polymers. A fine characterization of such polymers by size exclusion chromatography-viscometry has shown that they often contain unwanted linear chains, leading to chromatograms presenting overlapping peaks. A mathematical procedure has been developed in order to deconvolute these chromatograms and has been validated, thanks to blends of polystyrene standards. It allows one to calculate the purity of the sample as well as the intrinsic viscosity and molar mass distribution of each component. For stars with three arms of the same length, branching parameters have also been calculated and a viscosity law has been established.  相似文献   

10.
Abstract

The purpose of the present study was to investigate the fibrillisation process of liquid crystalline polymers (LCPs) in an amorphous poly(phenylene ether) (PPE) matrix during melt blending and a subsequent drawing operation, as well as to analyse the relationship between morphology and mechanical properties of the fibrillar reinforced LCP/PPE blends. In order to understand the effect of the compatibility between the blend partners, an additional set of LCP/PEE blends, containing different amounts of a compatibiliser, was studied too. The processing steps included: (i) melt extrusion and continuous hot stretching for fibrillisation of the LCP component in the different LCP/PPE blends, and (ii) compression (CM) or injection moulding (IM) of the drawn blends at temperatures below the melting temperature (Tm) of the LCPs. Samples from each processing stage were characterised by means of scanning electron microscopy (SEM), wide and small angle X-ray scattering (WAXS and SAXS), and mechanical testing. SEM and WAXS showed that the as extruded blends were isotropic, but after hot stretching the LCP components became highly oriented, with a high aspect ratio and a diameter of the fibrils between 0·4 and 3 μm. The fibrillated structure of the LCPs in the blends could be preserved after the compression and injection moulding only at temperatures below Tm of the LCPs. Addition of a compatibiliser to the LCP/PPE blend did not remarkably improve the adhesion between the components, as a result of the large difference between the coefficients of thermal expansion of the blend partners, which leads to different shrinkage conditions of the LCP fibrils and the PPE matrix. The flexural modulus (E) of all IM blends increased stepwise with an increase in the weight (wt) fraction of the LCP. At the same time, the highest values for the flexural strength (σ) were obtained for the LCP/PPE blends containing 5 wt-% LCP.  相似文献   

11.
Blends of polystyrene (PS) with poly(phenoxy)phosphazene (PPN) were studied by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). A third component, poly(2,6-dimethyl-1,4-phenylene ether) (PPE), was added with the aim of increasing compatibility of the blends. T g values did not vary in the PS/PPN blends, indicating that the components are substantially incompatible. The addition of PPE did not change the situation much even though some compatibility between PPN and PPE was detected. XPS on the cast films showed that only PPN was present at the surface. The surface composition of the blends was found to be dependent on the preparation technique.  相似文献   

12.
Immiscible blends of poly(2,6‐dimethyl‐1,4‐phenylene ether)/poly(styrene‐co‐acrylonitrile) (PPE/SAN) were batch‐foamed using CO2 as a blowing agent as a function of foaming temperature, foaming time, and blend composition. Evaluation of the resulting cellular morphology revealed an enhanced foamability of SAN with PPE contents up to 20 wt% as indicated by a similar volume expansion but a significantly reduced mean cell size. This behavior is related to a heterogeneous nucleation activity by the dispersed PPE phase. A further increasing PPE content, however, leads to increasing foam densities as well as nonuniform foam morphologies. The changes in the foaming behavior can be correlated with the melt rheological properties and the corresponding blend morphology. Shear‐rheological investigations revealed an onset of percolation of the dispersed PPE phase between 20 and 40 wt%, and a transition towards cocontinuity at 60 wt%. The materials response under uniaxial elongational flow, as assessed by Rheotens measurements, revealed an increase in elongational viscosity scaling with the PPE content, similar to the shear data. However, the strain hardening behavior was reduced by increasing PPE contents and, at 20 wt%, the drawability revealed a significant drop‐both phenomena limiting the foamability of polymers. In summary, the present study discusses fundamental aspects of foaming immiscible PPE/SAN blends. POLYM. ENG. SCI., 48:2111–2125, 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Four‐arm star‐shaped polymers and copolymers were obtained by transition metal‐catalyzed atom‐transfer radical polymerization (ATRP). The polymers were characterized by FTIR and 1H‐NMR spectroscopy. Gel permeation chromatography results indicated the formation of polystyrene and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) arms with controlled molecular weights. In dilute solution, the linear polymers had higher inherent viscosities than star‐shaped ones. Thermogravimetric analysis showed a similar degradation mechanism for linear and star‐shaped polymers. Differential scanning calorimetry indicated the successful formation of diblock star‐shaped copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
A new method is presented for the development of natural fiber composites of high‐performance thermoplastic polymers considering poly(phenylene ether) (PPE) and wood flour as an example system. The large gap between the high processing temperature of PPE, typically between 280 and 320°C, and the low decomposition temperature of wood flour, about 200°C, was reduced by using a reactive solvent, a low molecular weight epoxy. The epoxy formed miscible blends with PPE, which offered much lower viscosity compared to PPE and processing temperatures well below the decomposition temperature of wood flour. In addition, the epoxy component accumulated around the polar wood flour particles upon polymerization during the fabrication step. The composite materials consisted of a thermoplastic continuous phase and two dispersed phases, one of polymerized epoxy and the other of wood flour particles coated with polymerized epoxy. These composites offered a significant reduction in density and better mechanical and physical properties when compared to commercially available grades of engineering polymer blends filled with short glass fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2159–2167, 2002  相似文献   

15.
Nonwoven fiber mats composed of poly(phenylene ether) (PPE) and polystyrene (PS) blends were prepared by electrospinning of PPE/PS solutions in a mixture of chloroform and hexafluoroisopropanol. The blends showed higher electrospinnability and led to thinner fibers (200 nm–1.3 μm) than the pure components, because of a proper balance of electrical conductivity and interaction with the electrospinning solvent. The charge retention of the electrospun fibers was evaluated and related to the blend composition and the electret properties of the components. It was found that the nonwoven mats were able to retain up to 60% of the initial surface potential after several days of annealing at temperatures as high as 140°C, which is markedly higher than the charge retention of corona‐charged compact films. The capability of the electrospinning technique, to inject charges into the bulk of the material and to orientate the dipoles of the PPE phase in the field direction at the same time, was related to the good surface potential stability of the PPE/PS electrospun fiber mats. The possibility of creating thin PPE/PS fibers with excellent charge retention capabilities makes these materials ideal candidates for electret filter and sensing applications. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
Summary Dynamic mechanical measurements on polystyrene — poly(vinylmethylether) blends are demonstrating that the relaxation processes in the blends are mainly connected with the motions of the poly(vinylmethylether) chain.Concerning the effect of mixing on topological properties of the blends, an increase of the polydispersity of the relaxation processes is detected in blends with high molecular weight polystyrene while low molecular weight polystyrene exerts an effect of dilution upon the relaxation of the high molecular poly(vinylmethylether) chains.From these measurements as well as from thermoanalytical data it results that the energetic interaction is more pronounced in the blends with oligomeric than with high molecular weight polystyrene. The glass transition temperature shows a larger deviation from additivity for blends with high molecular polystyrene than for those with oligomeric polystyrene.Herrn Prof. Dr. M. Kryszewski zum 60. Geburtstag herzlichst gewidmet  相似文献   

17.
The chemical reactions occurring during the intumescent process taking place in the combustion of the poly(2,6-dimethyl–1,4-phenylene ether)–high-impact polystyrene blends (PPE–HIPS) are studied in detail through the chemical characterization of the burnt and original material by infrared, pyrolysis–gas chromatography–mass spectrometry, and direct insertion probe spectrometry. Evidence is given of thermal rearrangement in the blend of the polyether PPE chains to polybenzylic structures occurring in the heating conditions of pyrolysis or combustion, as previously shown, to take place in thermal degradation of PPE. The rearranged chain segments are shown to give a larger contribution to the intumescent char, while volatile blowing products are mostly formed by polystyrene and polybutadiene components. From PPE–HIPS blends, the volatilization of the fire-retardant triphenyl phosphate (TPP), which when heated alone volatilizes at a temperature below that of PPE–HIPS degradation, is delayed probably by hydrogen bonding with PPE. This allows TPP to play the typical flame inhibition role of volatile phosphorus compounds. Moreover, it is found that TPP favors the PPE rearrangement and henceforth increases the char yield of the burning blend, which is a typical condensed phase fire-retardant action. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2231–2240, 1998  相似文献   

18.
The effects of postindustry recycling of polymer blends composed of poly(phenylene ether) (PPE) on the properties of the PPE blends were investigated by simulated recycling with multiple molding cycles. Two compositions with different concentrations of PPE were reprocessed with an injection‐molding machine. Mechanical, thermal, rheological, and morphological characterizations were carried out on as‐produced and reprocessed samples to examine the influence of the number of molding cycles on the two specific PPE blends. Efforts were made to determine the effect of each molding cycle on the specific properties of the two PPE blends, including the Elastic (E), modulus, stress at break, strain at break, multiaxial impact, and melt viscosity. The results are discussed in detail. The retention of the properties correlated well with the unperturbed morphology of the compositions before and after recycling, as observed by transmission electron microscopy analyses on fractured tensile samples. However, more in‐depth microanalyses are required to identify the effect of recycling on the individual components present in the studied compositions. In this study, we aimed to establish structure–property relations upon recycling using several characterization techniques. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Blends of polystyrene (PS) with poly(4-phenoxyphenoxy)phosphazene (PPA) were studied by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). A third component, poly(2,6-dimethyl-1,4-phenylene ether) (PPE), was added to improve the compatibility. While DSC and XPS reveal that PS and PPA are incompatible, the presence of PPE increases the compatibility between the two polymers.  相似文献   

20.
The objective of these investigations was to increase the use temperature of novel star‐block polymers consisting of a crosslinked polydivinylbenzene (PDVB) core from which radiate multiple poly(isobutylene‐b‐polystyrene) (PIB‐b‐PSt) arms, abbreviated by PDVB(PIB‐b‐PSt)n. We achieved this objective by blending star‐blocks with poly(phenylene oxide) (PPO) that is miscible with PSt. Thus, various PPO/PDVB(PIB‐b‐PSt)n blends were prepared, and their thermal, mechanical, and processing properties were investigated. The hard‐phase glass‐transition temperature of the blends could be controlled by the amount (wt %) of PPO. The blends displayed superior retention of tensile strengths at high temperatures as compared to star blocks. The melt viscosities of blends with low weight percentages of PPO were lower than those of star blocks. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2866–2872, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号