首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李君  陈斐  张东明  沈强  张联盟 《硅酸盐学报》2008,36(Z1):103-107
利用流延成型使α-Si3N4晶须在基体中定向排列,并采用热压烧结技术制备了SGN4陶瓷.用X射线衍射和扫描电镜对陶瓷的物相和显微结构进行了研究,讨论了流延成型对坯体中晶须的分布状态的影响和烧结条件对所得到的块体的显微结构的影响.结果表明:流延成型和热压烧结可以使晶须呈一维定向排布;随着烧结温度的升高,烧结样品的相对密度增大;添加10.6%质量分数)α-Si3N4晶须在1500℃下烧结,Si3N4陶瓷的断裂韧性为9.24MPa·m1/2,Vickers硬度为15.740Pa.在1 600℃α-Si3N4转变成的长柱状β-Si3N4颗粒,大大提高了Si3N4陶瓷的力学性能,其断裂韧性和Vickers硬度分别为10.26MPa·m1/2和16.56GPa.  相似文献   

2.
β晶种增韧Si3N4复合材料的制备和力学性能   总被引:8,自引:0,他引:8  
利用β-Si3N4晶种制备Si3N4复合材料,研究了晶种对材料显微结构和力学性能的影响。实验结果表明,晶种尺寸可控制Si3N4晶粒生长和显微结构均匀性。当新加入晶种直径和长径比较小时,晶粒直径形成双峰分布的显微结构,材料的抗弯强度较高,当晶种尺寸适中时,其显微结构均匀,断裂韧性值明显提高;晶种的加入量过多,材料的相对密度和力学性能降低。  相似文献   

3.
采用常压烧结工艺制备了Si3N4-Y2O3-La2O3陶瓷,并对Si3N4陶瓷的力学性能、相组成和显微组织进行了分析和讨论。结果表明:添加4%Y2O3~4%La2O3的复合稀土氧化物后,Si3N4陶瓷呈长柱状的β-Si3N4晶粒,抗弯强度为960MPa,断裂韧性为7.5MPa.m1/2,具有较好的力学性能。  相似文献   

4.
本工作对两种成分的Si_3N_4陶瓷进行了热压烧结。测定了密度、硬度、抗弯强度、断裂韧性等性能指标。在扫描电镜下进行了显微结构及断口观察。研究表明,同时加入几种添加剂(Y_2O_3、MgO、AIN、Al_2O_3等)对形成均匀致密、长径比大,粒径小的柱状β-Si_3N_4有利,高的断裂韧性和抗弯强度的获得主要取决于以柱状β晶为基本特征的显微结构。  相似文献   

5.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620-1770K的高温高压条件下进行了α-Si3N4与γ-Si3N4、α-Si3N4粉体的烧结研究,并探讨了烧结温度及压力对烧结体性能的影响。实验结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4;在相同的烧结条件下,α-SigN4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高。α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa。烧结体由相互交错的长柱状β—Si3N4晶粒组成.显微结构均匀。  相似文献   

6.
《陶瓷》2017,(9)
利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3、Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性分别达到686MPa和7.42MPa·m~(1/2)。通过无压烧结工艺,在1750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7。笔者着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。在氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性却得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺入量为2wt%时断裂韧性达到最大(7.68MPa·m~(1/2)),提高了20%以上。  相似文献   

7.
以Y2O3-Al2O3-La2O3体系作烧结助剂,在5.4~5.7GPa、1620K~1770K的高温高压条件下进行了α-Si3N2与γ-Si3N4、α-Si3N4粉体的烧结研究.探讨了烧结温度及压力对烧结体性能的影响.实验测试结果表明:α-Si3N4、γ-Si3N4完全相变为β-Si3N4,相同的烧结条件下,α-Si3N4比γ-Si3N4、α-Si3N4混合粉体烧结试样的相对密度、维氏硬度高.α-Si3N4与γ-Si3N4、α-Si3N4混合粉体烧结试样的最高相对密度与维氏硬度分别为98.78%、21.87GPa和98.71%、21.76GPa.烧结体由相互交错的长柱状β-Si3N4晶粒组成,显微结构均匀.  相似文献   

8.
采用MgSiN2作为烧结助剂,在2000℃高温下热压26h,制备了透明β-Si3N4陶瓷.X射线衍射分析表明:透明β-Si3N4陶瓷由纯β-Si3N4相组成.透明-Si3N4陶瓷的透过率随波长增加而增加,当波长为2.5 μm时透过率达到最大值,为70%,波长在0.7~4.0 μm区间,透过率保持在60%以上,截止波长为5.0 μm.  相似文献   

9.
采用腐蚀模板法对氮化硅陶瓷薄板进行熔融碱腐蚀处理获取β-Si3N4晶种.研究了腐蚀介质、时间对晶粒形貌及分散性的影响.优化了超声、磁力搅拌、研磨三种晶粒剥离的方法,确认磁力搅拌的方法是最佳的剥离工艺.通过X射线衍射和扫描电子显微镜对产物进行了微观形貌观察及物相分析,结果显示获得的晶种为高纯度β-Si3N4,粒径范围为2~10μm,最高长径比可达10以上.  相似文献   

10.
添加Mg-Al-Si体系烧结助剂的氮化硅陶瓷的无压烧结   总被引:9,自引:1,他引:8  
以MgO-Al2O3-SiO2体系作为烧结助剂,研究了氮化硅陶瓷的无压烧结。着重考察了烧结温度、保温时间以及烧结助剂用量等工艺因素对氮化硅陶瓷材料力学性能和显微结构的影响,通过工艺调整来设计材料微观结构以提高材料的力学性能。在烧结助剂质量分数为3.2%的情况下,经1 780℃,3 h无压烧结,氮化硅大都呈现长柱状β-Si3N4晶粒,具有较大的长径比,显微结构均匀。样品的相对密度达99%,抗弯强度为956.8 MPa,硬度HRA为93,断裂韧性为6.1 MPa·m1/3。具有较大长径比晶粒构成的显微结构是该材料表现较高力学性能的原因。  相似文献   

11.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及Al2O3与Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为1750℃、保温时间为4 h、烧结气压为0.9 MPa、烧结助剂添加量为6%(质量分数)、Al2O3与Y2O3质量比为1:1时,β-Si3N4晶粒的长径比达到12以上。  相似文献   

12.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及 Al2O3与 Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为 1750 ℃、保温时间为 4 h、烧结气压为 0.9 MPa、烧结助剂添加量为 6% (质量分数)、Al2O3与 Y2O3质量比为 1:1 时,β-Si3N4晶粒的长径比达到 12 以上  相似文献   

13.
以Si3N4和BN粉末为原料,Si3N4-BN复合粉末中BN的体积分数分别选定为10%、20%和30%,采用质量分数为2%的Al2O3和6%的Y2O3作为烧结助剂,分别在1500、1600和1650℃,压力50 MPa,保温5 min的条件下,采用放电等离子体烧结法制备了致密Si3N4-BN复合陶瓷。XRD结果和SEM分析表明:当煅烧温度为1650℃时,复合陶瓷中的α-Si3N4已完全转变为β-Si3N4;BN的加入抑制了复合陶瓷中Si3N4晶粒的生长而使结构细化;复合陶瓷的维氏硬度和断裂韧性随BN含量的增加而逐渐降低。  相似文献   

14.
以电熔镁砂、单质Si粉和鳞片石墨为主要原料,木质磺酸钙溶液(1.25 g/mL)为结合剂,氮气气氛下分别于低温段1350℃氮化2h和高温段1500℃氮化3h制备成MgO-C材料.通过X射线衍射(XRD)和扫描电子显微镜(SEM)分别分析试样的物相组成和显微结构,显气孔率、体积密度和耐压强度被用来表征试样的物理性能.结果表明:除500 MPa成型压力下试样内部生成少量的MgSiN2相外,不同成型压力氮化后试样的物相组成并无明显变化,主要生成α-Si3N4、β-Si3N4和少量的SiC相.试样内部原位氮化合成的β-Si3N4晶体主要呈现长柱状形貌.当成型压力为400 MPa时,β-Si3N4晶体的尺寸最大,试样显气孔率最低,耐压强度最大.  相似文献   

15.
田春艳  刘宁 《硅酸盐通报》2007,26(5):1020-1024
采用热压烧结方法,以非晶纳米Si3N4和α-Si3N4粉末作为原料,制备了纳米氮化硅陶瓷,研究了起始粉末对氮化硅陶瓷组织和力学性能的影响.纳米氮化硅陶瓷的主要组成相为α-Si3N4、β-Si3N4和Si2N2O;其组织由尺寸为100nm左右的晶粒组成,α-Si3N4起始粉末的添加对组织形态没有影响.抗弯强度和断裂韧性均随α-Si3N4起始粉末含量的增加而先升后降,在其含量为40%时达到最大值;硬度随α-Si3N4粉末含量的增加而降低.  相似文献   

16.
固定其他组分配比不变,仅改变配方中Si粉加入量即Si粉从10%增加到60%,经过准静态氮化法反应烧结制得Si3N4-SiC复合材料,并对其进行力学性能、XRD和SEM检测,实验结果显示:随着Si加入量的增加,复合材料的强度逐渐增大,而密度却呈现减小趋势,生成的Si3N4-中β-Si3N4含量增加,形成的网络结构的致密度也相应增大,但β-Si3N4晶粒减小。  相似文献   

17.
本文对自增韧Si3N4陶瓷材料进行了研究。采用SHS合成的α-Si3N4为原料,添加复合稀土氧化物Y2O3、Al2O3,采用热压烧结制备自增韧氮化硅,热压温度为:1800℃;压力为:30MPa。研究了不同的稀土、添加剂对氮化硅自增韧效果的影响。测试了样品体积密度、抗弯强度和断裂韧性。采用SEM和XRD分析了样品的显微结构和物相组成。实验结果表明,样品的最优配比为:70%α-Si3N4,22%TiC,6%Y2O3,2%Al2O3;样品的相对密度为99.82%,抗弯强度为788.04MPa;断裂韧性为12.45MPa.m1/2。其主晶相为β-Si3N4,有较明显的长柱状晶体。  相似文献   

18.
本研究了Si3N4-MgO—Y2O3-CeO2陶瓷的烧结过程和微观结构,常压烧结氮化硅陶瓷的致密化主要通过液相烧结实现。微观分析结果表明,氮化硅烧结体的显微结构为等轴状的α—Si3N4和长柱状的β—Si3N4相互交织,这种结构有利于提高烧结体的强度和韧性。  相似文献   

19.
采用常压烧结工艺制备了含复合稀土氧化物Y2O3和La2O3的Si3N4陶瓷,并利用万能试验机、显微硬度计、X射线衍射仪和扫描电镜等对Si3N4陶瓷的力学性能、相组成和显微组织进行了分析和讨论.结果表明:1600℃时随着烧结助剂的增加,致密度增加;1700℃和1750℃时随着烧结助剂的增加,致密度先增加后降低,添加8%的Y2O3~La2O3在1700℃下烧结60min,Si3N4陶瓷呈长柱状的β-Si3N4晶粒,抗弯强度为960MPa,断裂韧性为7.5MPaom1/2,具有较好的力学性能.  相似文献   

20.
烧结助剂对自增韧Si3N4陶瓷显微结构和性能的影响   总被引:7,自引:0,他引:7  
研究了烧结助剂质量分数及比例对热压自增韧Si3N4 陶瓷显微结构和力学性能的影响。结果表明 :材料室温抗弯强度和断裂韧性均在烧结助剂的质量分数为 15 %时达到峰值 ,其中 5 %Y2 O3 10 %La2 O3 85 %Si3N4 体系的抗弯强度达 911.3MPa,断裂韧性达10 .0 2MPa·m1 /2 。同时 ,分析了材料显微结构与力学性能的关系 ,发现自增韧Si3N4 陶瓷中 β-Si3N4 柱状晶直径的双峰分布特征对材料力学性能的提高起着很重要的作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号