首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于灰关联理论的滚动轴承故障诊断研究   总被引:3,自引:0,他引:3  
针对实际工程中滚动轴承故障的复杂灰特性以及不确定性问题,提出了基于灰关联理论故障诊断方法。灰关联理论具有"小样本、贫信息、不确定性"问题处理能力强、计算复杂度低等优点。通过对灰关联原理、灰关联系数与分辨系数的关系,以及分辨系数的性质和取值原则的研究,成功地将灰关联理论应用于滚动轴承的故障诊断。仿真实例研究结果表明,灰关联故障诊断方法计算简单、诊断结果与定性分析结论一致,便于形成知识库中的规则,对工程实践具有理论指导作用,且对样本数量及其分布规律没有特殊要求,有较大实用价值。  相似文献   

2.
针对滚动轴承在故障诊断过程中信号特征提取困难导致诊断准确率低、鲁棒性差的问题,提出一种基于Squeeze-Excitation-ResNeXt(SE-ResNeXt)网络的滚动轴承故障诊断方法;将采集的一维轴承振动信号作为输入,进行滑动窗口采样与标准化处理,通过压缩、激励操作进行特征重标定,扩大模型感受野,并级联聚集残差变换网络自适应提取故障信号特征;在模型训练过程中选择最优压缩率为1/8以及8个组卷积,引入Relu函数加快网络收敛,使用全局平均池化替代全连接层避免过拟合现象,构造能够自主进行表征学习的最优故障诊断模型;通过仿真实验表明:与目前的深度学习算法相比,SE-ResNeXt网络能够准确的实现轴承故障诊断,并在高噪声的环境下仍具有较好的鲁棒性。  相似文献   

3.
基于小波变换的滚动轴承故障诊断分析   总被引:1,自引:1,他引:1  
设计了滚动轴承故障模拟试验台,利用小渡变换对检测到的轴承故障信号进行分析,通过分解到各个频段,再经过分析比较故障信号所得出的细节信号,得出基于小波变换的滚动轴承故障诊断方法是可靠准确的,可以应用于轴承的状态检测与故障诊断.  相似文献   

4.
张旭 《计算机仿真》2012,29(5):400-403
研究滚动轴承故障诊断问题,故障振动信号具有非平稳性、突变性。由于运行中噪声影响识别故障信号,传统傅立叶变换或单一小波分析难以对特征信号进行准确提取,导致滚动轴承故障诊断正确率较低。为了提高了滚动轴承故障诊断正确率,提出一种小波分析和Hilbert变换的滚动轴承故障诊断方法。首先采用小波分析对采集滚动轴承信号进行分解,消除噪声信息,然后采用Hilbert变换对信号进行进一步精细分解。利用MATLAB软件对滚动轴承故障进行仿真,仿真结果表明,改进算法提高了滚动轴承故障诊断正确率,很适合处理滚动轴承的故障信号。  相似文献   

5.
针对滚动轴承振动信号中的故障特征难以提取的问题,提出一种基于变分模态分解(VMD)和混沌麻雀搜索算法(CSSA)优化支持向量机(SVM)的故障诊断方法.首先,利用VMD处理滚动轴承信号,提取本征模态分量(IMF)的能量谱和能量熵作为故障特征向量;其次,通过引入改进Tent混沌映射和自适应t分布策略,加入边界探索和警戒解...  相似文献   

6.
7.
滚动轴承是各类旋转机械中最为重要的元件之一,若滚动轴承在机械设备运行过程中发生故障又无法及时判断出故障,所造成的连锁反应会对整条生产线产生影响,从而给企业造成经济损失。为了及时判断出滚动轴承所发生的故障,提出一种基于卷积神经网络(CNN)和差分进化算法(DE)优化支持向量机(SVM)的故障诊断模型(CNN-DE-SVM),针对滚动轴承的典型故障开展研究。结果表明,CNN-DE-SVM模型拥有较高的特征提取性能与故障诊断精度。  相似文献   

8.
基于Kohonen神经网络的滚动轴承故障诊断   总被引:4,自引:0,他引:4  
提出了一种新的列车滚动轴承故障诊断方法。首先利用小波包分解对滚动轴承的 动态信号进行分析、提取特征,然后采用Kohonen神经网络进行滚动轴承故障诊断。对7类 列 车滚动轴承进行了实验,结果表明该方法具有很好的故障诊断效果。  相似文献   

9.
针对直升机系统与传递路径复杂,采集信号中成分多样,传统方式提取的特征难以有效反映信号健康状态,影响滚动轴承诊断精度等问题,在传统时域指标的基础上,结合多尺度空间对特征空间重叠和信号跨尺度复杂性问题上的优势,构建多尺度指标作为故障分类的依据。根据ReliefF算法对原始高维多尺度特征迭代计算得到权重,利用权重值进行特征选择,同时减轻计算成本。权重最大的一部分特征将作为随机森林模型的输入,利用其多分类器集成学习的优势,进行滚动轴承故障分类诊断。通过滚动轴承公开数据集来说明所提方法的优势和可行性。数据处理结果表明,多尺度特征较原始时域特征具有更好的分类性能,并且随机森林在该算法中较其他分类模型分类效果更好。  相似文献   

10.
滚动轴承作为旋转机械的关键部件,其运行状态决定设备以及整个系统的性能.滚动轴承出现故障时会产生高频的应力波信号,而Peakvue技术能够有效的检测应力波,运用一种基于Peakvue技术的滚动轴承故障诊断方法.该方法采用加速度传感器采集滚动轴承振动信号,利用高通滤波器滤除加速度传感器输出信号中不必要的低频部分,按照一定的时间间隔对高频信号和应力波信号进行峰值提取,并对提取的峰值信号进行包络检波处理分析故障类型.应用西储大学轴承数据集进行验证,结果表明该方法能准确有效地检测出滚动轴承的故障类型.  相似文献   

11.
混沌理论是一种用于描述确定非线性系统内在随机性的一种数学方法。作为确定论和概率论的桥梁,混沌理论具有对初始条件敏感、短期可预测等特点,近年来在各工程领域得到应用。基于混沌理论的故障检测是混沌理论应用的一个重要方面。本文在简单介绍混沌原理的基础上,分类介绍了基于混沌理论的各种故障检测方法及其研究现状,探讨了这一领域中有待进一步研究的若干问题。  相似文献   

12.
    
Rolling bearing tips are often the most susceptible to electro-mechanical system failure due to high-speed and complex working conditions, and recent studies on diagnosing bearing health using vibration data have developed an assortment of feature extraction and fault classification methods. Due to the strong non-linear and non-stationary characteristics, an effective and reliable deep learning method based on a convolutional neural network (CNN) is investigated in this paper making use of cognitive computing theory, which introduces the advantages of image recognition and visual perception to bearing fault diagnosis by simulating the cognition process of the cerebral cortex. The novel feature representation method for bearing data is first discussed using supervised deep learning with the goal of identifying more robust and salient feature representations to reduce information loss. Next, the deep hierarchical structure is trained in a robust manner that is established using a transmitting rule of greedy training layer by layer. Convolution computation, rectified linear units, and sub-sampling are applied for weight replication and reducing the number of parameters that need to be learned to improve the general feed-forward back propagation training. The CNN model could thus reduce learning computation requirements in the temporal dimension, and an invariance level of working condition fluctuation and ambient noise is provided by identifying the elementary features of bearings. A top classifier followed by a back propagation process is used for fault classification. Contrast experiments and analyses have been undertaken to delineate the effectiveness of the CNN model for fault classification of rolling bearings.  相似文献   

13.
基于软件共振解调分析的滚动轴承故障诊断系统开发   总被引:5,自引:0,他引:5  
滚动轴承是机械设备的重要组成部分,很大一部分的机械故障都是由它引起的,共振解调是一种有效的分析滚动轴承故障信号的方法,本文使用办报编程实现共振解调,利用Labwiew软件,在完全依靠软件信号处理方法的基础上,成功实现了故障信息的提取,降低了系统的成本,提高了系统的实用性。  相似文献   

14.
This paper presents an intelligent diagnosis method for a rolling element bearing; the method is constructed on the basis of possibility theory and a fuzzy neural network with frequency-domain features of vibration signals. A sequential diagnosis technique is also proposed through which the fuzzy neural network realized by the partially-linearized neural network (PNN) can sequentially identify fault types. Possibility theory and the Mycin certainty factor are used to process the ambiguous relationship between symptoms and fault types. Non-dimensional symptom parameters are also defined in the frequency domain, which can reflect the characteristics of vibration signals. The PNN can sequentially and automatically distinguish fault types for a rolling bearing with high accuracy, on the basis of the possibilities of the symptom parameters. Practical examples of diagnosis for a bearing used in a centrifugal blower are given to show that bearing faults can be precisely identified by the proposed method.  相似文献   

15.
传统的小波分解存在小波基函数难以选择的问题,经验模式分解(EMD)存在模式混叠现象,不能准确地诊断出轴承故障。因此本文将集成经验模式分解(EEMD)和能量算子解调相结合,建立了滚动轴承单自由度模型,仿真故障激励,以获取轴承故障动力学响应。最后利用模型结果对本文方法进行数值验证,以证明本文所提方法的有效性和正确性。  相似文献   

16.
    
In view of the difficulty in measuring the speed signal and integrating the vibration and speed information flexibly in actual variable speed bearing fault diagnosis, a single vibration signal-driven variable speed intelligent fault diagnosis scheme for rolling bearings is developed to guarantee the reliability and safety of the equipment in this paper. In the proposed fault diagnosis scheme, the extreme multi-scale entropy (EMSEn) of the raw vibration signal is employed as the alternative characterization parameter of the speed information, and an intelligent diagnosis model named deep branch attention network (DBANet) is developed to integrate the vibration and speed information more flexibly. The developed DBANet contains 2 parallel and relatively independent forward propagation channels, and the attention mechanism is introduced into the deep architecture at branch level to adjust the importance of different branches, which endow the model with the ability of fusing the vibration and speed information autonomously. The effectiveness of the proposed method is verified by experiments, and the experimental results show that, compared with the methods relying on external information fusion, the suggested DBANet can integrate the vibration and speed information more flexibly. Besides, in the case of no speed signal, the proposed diagnosis scheme can achieve more outstanding results compared with the methods of using other multi-scale entropy features as the alternative characterization parameter of the speed information.  相似文献   

17.
针对当前诊断方法对滚动轴承故障特征表征困难以及在噪声干扰大的环境中检测性能下降的问题,提出了一种基于加权密集连接网络和注意力机制的滚动轴承故障诊断的方法,该方法由特征提取和故障分类两部分组成;在特征提取部分,首先采用加权密集连接网络从轴承振动信号中提取特征,并将不同空间级别的特征进行组合以增强信息的多样性,然后利用注意力机制突出重要信息,获得准确的表征故障特征;故障分类模型以表征的特征信息作为输入,经过Softmax函数输出每种故障类型的诊断结果;实验结果表明,所提模型在加性噪声干扰的情况下具有良好的诊断性能,比其他方法更具优势。  相似文献   

18.
对现有的滚动轴承故障检测仪进行了调查和研究,设计了一种功耗小、成本低的便携式滚动轴承故障检测仪。该检测仪硬件结构及软件系统基于MSP430F149单片机设计与开发,采用时域参数指标诊断滚动轴承故障。实测结果表明,检测仪能快速、自动地诊断滚动轴承故障,验证了该设计的有效性和可靠性。  相似文献   

19.
当前无线传感网络中的节点分布可能存在极不均匀现象,造成节点能量消耗不集中,远离Sink节点的簇头能耗较大,破坏传感网络覆盖拓扑结构,导致网络的能量不均衡现象,通信受阻.为解决上述问题,提出了一种基于模糊c均值节点能量分区控制算法.利用混沌序列的均匀遍历特性和差分进化算法的高效全局搜索能力,对传感网络内的节点能量属性进行分类搜索,利用Logistics混沌映射对头节点进行优化分区操作,把混沌扰动量引入到节点能量分区当中,完成最优能量节点的选择,优化通信过程.仿真结果证明,算法对无线传感网络最优节点的聚类性能效果提高明显,通信效率提高25%以上.具有很好的实际应用性能和效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号