首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用极性有机分子十二烷基胺插层高岭石,葡萄糖层间取代的方法合成高岭石-葡萄糖插层复合物。以高岭石.葡萄糖插层复合物为前驱体,采用原位碳热还原、氮化反应技术,在1450℃保温4h,以500mL/min的N2流量的反应条件合成了Sialon粉体。并运用XRD、FT-IR、TG、DSC等技术表征反应过程和产物特征。研究表明,十二烷基胺插层复合物中,高岭石的d001值扩大为2.280nm,高岭石.葡萄糖插层复合物中,高岭石的d001值由0.717nm扩大为3.364nm,插层率达87%。插层复合物原位碳热还原、氮化反应研究表明,产物中结晶相主要有:Sialon相(以β-Sialon为主)和少量莫来石。高岭石插层复合物原位碳热还原、氮化反应能在较低的温度下合成β-Sialon,是一种新颖而有效的方法。  相似文献   

2.
以钛铁粉、羰基镍粉和碳的前驱体(蔗糖)为原料,通过前驱体碳化复合技术制备Ti-Fe-Ni-C系反应热喷涂粉末,并通过爆炸喷涂技术原位合成并沉积TiC/Fe-Ni金属陶瓷复合涂层;利用XRD、SEM和EDS研究喷涂复合粉末和涂层的相组成、显微结构.结果表明:采用前驱体碳化复合技术制备的Ti-Fe-Ni-C反应喷涂复合粉末粒度均匀;所制备的TiC/Fe-Ni复合涂层由不同含量TiC颗粒分布于金属基体内部而形成的复合片层叠加而成,基体主要是(Fe,Ni)固溶体;TiC颗粒大致呈球形,粒度为纳米级;复合涂层的平均显微硬度HV0.2为18.9 GPa.  相似文献   

3.
TiC/Fe-Ni金属陶瓷复合涂层反应等离子喷涂研究   总被引:2,自引:0,他引:2  
以钛铁粉、镍粉、铁粉和碳的前驱体(蔗糖)为原料采用前驱体碳化复合技术制备了Ti-Fe-Ni-C系反应热喷涂粉末,并通过等离子喷涂(RPS)技术原位合成并沉积了TiC/Fee-Ni金属陶瓷复合涂层.采用XRD、SEM和EDS对喷涂粉末和涂层的成分、组织结构进行了分析.研究表明该反应喷涂粉末粒度均匀、无有害相生成;所得涂层由不同TiC颗粒含量的TiC/Fe-Ni复合片层组成;TiC颗粒大致呈球形,粒度呈纳米级;所获涂层在相同条件下耐磨性是Ni60涂层的7倍.  相似文献   

4.
反应等离子喷涂TiC/Fe-Ni金属陶瓷复合涂层的显微组织   总被引:4,自引:1,他引:4  
采用前驱体碳化复合技术制备Ti-Fe-Ni-C系粉末,并通过反应等离子喷涂技术(RPS)原位合成并沉积了TiC/Fe-Ni基金属陶瓷复合涂层。利用XRD、SEM和EDS研究复合粉末和涂层的成分、组织结构,考察复合粉末的TiC含量及复合粉末粒度对涂层组织结构的影响。结果表明:采用前驱体碳化复合技术制备的反应喷涂复合粉末粒度均匀、无有害相生成;TiC/Fe-Ni复合涂层由不同含量TiC颗粒分布于晶粒内部而形成的晶内型复合强化片层叠加而成,基体主要为(Fe、Ni)固溶体,TiC颗粒呈纳米级;涂层TiC含量较高时,纳米级TiC颗粒弥散分布更均匀;喷涂粉末粒度较大时,片层厚度较大,孔隙率较高。  相似文献   

5.
以粉煤灰、锆英石和活性炭为原料,采用原位碳热还原氮化法成功制备β-Sialon/ZrN/ZrON 复合材料。研究配料组成和保温时间对合成过程的影响,并讨论材料的生成过程。通过XRD和SEM表征材料的相组成和显微组织。结果表明:增加试样中的碳含量以及延长保温时间均能促进β-Sialon、ZrN 和ZrON 的生成。合成β-Sialon/ZrN/ZrON复合材料的适宜工艺参数为锆英石、粉煤灰和活性炭的质量比49:100:100、合成温度1550°C、保温时间15 h。在1550°C保温15 h合成的β-Sialon 和ZrN(ZrON)的平均粒径分别约为2和1μm。β-Sialon/ZrN/ZrON复合材料的制备过程包括β-Sialon和ZrO2的生成过程以及 ZrO2向ZrN和ZrON的转化过程。  相似文献   

6.
用AgCl前驱体替代传统AgNO_3,通过简单沉淀法合成β-Ag_2Se和β-AgCuSe纳米颗粒。结果表明:所得β-Ag_2Se和β-AgCuSe纳米颗粒均为斜方晶系结构。随着前驱体AgCl浓度的增加,出现Ag_2S杂质。此外,产物的显微组织观察结果表明,其形状为多面体和卵石状。β-Ag_2Se纳米颗粒因晶粒尺寸较小而具有较高的带隙能量。采用AgCl前驱体能成功制备纯纳米颗粒。因此,此研究对合成β-Ag_2Se和β-AgCuSe纳米颗粒具有应用前景的前驱体是十分有意义的。  相似文献   

7.
以沥青为前驱体制备TiC/FeCrNi反应火焰喷涂复合涂层   总被引:4,自引:0,他引:4  
以钛铁粉、CrFe粉、羰基镍粉和碳的前驱体(石油沥青)为原料,通过前驱体碳化复合技术制备了Ti-Fe-Cr-Ni-C反应喷涂复合粉末,并通过普通火焰喷涂成功地合成与沉积了TiC/FeCrNi复合涂层.采用XRD和SEM对喷涂粉末和涂层的相组成和显微结构进行了分析,同时对涂层耐磨性能进行了对比研究.研究结果表明:采用前驱体碳化复合技术制备的Ti-Fe-Cr-Ni-C反应喷涂复合粉末粒度均匀、无有害相生成;所制备的TiC/FeCrNi复合涂层由不同含量TiC颗粒分布于金属基体内部而形成的复合强化片层叠加而成,TiC颗粒呈纳米级;基体由(Fe,Cr)和Cr0.19Fe0.7Ni0.11两相组成;相同条件下,所获TiC/FeCrNi复合涂层磨损体积大约是常规火焰喷涂Ni60涂层的1/8.  相似文献   

8.
以高岭石-二甲基亚砜作为前驱体,PVP(聚乙烯吡咯烷酮)作分散剂,银氨络合物层间取代,以高岭石的层间作为反应器来控制银粒子的大小,制备出Ag/高岭石复合物.XRD表明,PVP对高岭石进行了表面改性,促进了纳米银粒子在层间的合成,出现明显的Ag的(111)、(200)、(220)、(311)4个衍射峰.根据小角度Ag的(001)衍射峰可知,高岭石层间距由0.716nm被扩大到4.53nm.TEM直观地表现了银在高岭石层间的形貌.  相似文献   

9.
以粉煤灰和炭黑为原料,采用碳热还原氮化法成功制备出β-Sialon基复合材料。研究了加热温度和配料组成对合成过程的影响,分析了材料的生成过程。采用XRD和SEM手段表征了合成材料的相组成和显微结构。结果表明:升高加热温度,增大炭黑与粉煤灰的质量比均可以促进β-Sialon的生成;将炭黑与粉煤灰质量比为0.56的试样加热至1723K并保温6h,可以合成β-Sialon基复合材料;合成材料中β-Sialon多以粒状形式存在,平均粒径为2~3μm;β-Sialon基复合材料的生成过程包括O′-Sialon、X-Sialon和β-Sialon的生成及O′-Sialon和X-Sialon向β-Sialon的转化过程。  相似文献   

10.
以高钛渣、硅灰和高铝矾土熟料为原料,采用碳热还原氮化法合成TiN/O′-Sialon导电陶瓷粉体。利用XRD、SEM和EDS检测手段研究合成温度及恒温时间对粉体相组成和显微形貌的影响,并探讨合成机理。结果表明:随合成温度的升高和恒温时间的延长,产物中O′-Sialon的含量逐渐增加,并在1 375~1 400℃、恒温7 h时成为产物主晶相,此时产物中还有较多TiN和少量β′-Sialon生成。继续提高温度和延长反应时间,体系气氛的改变导致O′-Sialon迅速向β′-Sialon转化。合成粉体中O′-Sialon晶粒多呈等轴状,粒度约2μm,TiN晶粒为细小粒状。此外,反应体系中还有大量白色β′-Sialon晶须状沉积物生成。  相似文献   

11.
以 SnCl4为前驱体、以氧气和氢气的混合气体为爆源,通过气相爆轰制备纳米二氧化锡粉末。并通过 XRD 和 TEM 等测量手段对纳米 SnO2进行表征及分析,发现所制备的纳米 SnO2颗粒形状呈球形,粒径在 1~10 nm 之间。由此可以得出结论:气相爆轰可以设计合成独特的纳米 SnO2。  相似文献   

12.
反应火焰喷涂TiC/Fe复合涂层组织及形成机理   总被引:1,自引:0,他引:1  
以TiFe粉和碳的前驱体(石油沥青)为原料通过前驱体碳化复合技术制备了Ti-Fe-C系反应喷涂复合粉末,并用普通火焰喷涂技术制备了TiC/Fe陶瓷金属复合涂层.观测了喷涂粉末、淬熄实验获取的飞行粒子以及涂层的形态、相和组织结构.结果表明:前驱体碳化复合Ti-Fe-C系喷涂粉末有非常紧密的结构;可有效的解决反应喷涂过程中原料粉末分离的问题.在反应火焰喷涂过程中,每一个喷涂粉末颗粒构成独立的微小反应单元,原料之间反应充分.在整个喷涂过程中喷涂粉末经历了熔化扩散、物相形成、碰撞后快速凝固三个阶段.所得涂层由TiC和Ti2O3共生聚集片层和细小TiC颗粒弥散分布于金属基体所形成的内晶型复合强化片层交替叠加而成.  相似文献   

13.
溶胶-凝胶/前驱体裂解法合成ZrB_2超细粉(英文)   总被引:1,自引:0,他引:1  
以硝酸氧锆(ZrO(NO3)2·2H2O )、硼酸(H3BO3)和酚酚醛树脂为原料,采用溶胶-凝胶/先驱体裂法解合成 ZrB2超细粉。将硝酸氧锆和硼酸先溶于水中,加入乙醇,用稀氨水调节溶液的 pH 值形成溶胶,再将溶解在乙醇中的酚醛树脂加入到氧化锆溶胶中,溶胶陈化后形成凝胶,经干燥、过筛获得前驱体粉末。将前驱体粉末在 1300-1500 °C、流动氩气中热处理 1 h,得到 ZrB2粉末。利用 XRD 和 SEM 对粉体的相组成和微观形貌进行表征,研究了原料配比、合成温度对合成粉体的影响。结果表明,在硼锆比为3,碳锆比为 5,醇水比为 3,合成温度为 1500 °C的工艺参数下合成出较好的 ZrB2 超细粉。  相似文献   

14.
以钛铁粉和碳的前驱体(蔗糖)为原料通过前驱体碳化复合技术制备了Ti-Fe-C等离子熔覆复合粉末,并通过等离子熔覆技术在普通低碳钢表面成功地原位合成了TiC/Fe陶瓷金属复合涂层.着重研究了不同C/Ti原子比对等离子熔覆TiC/Fe复合涂层的相组成、显微结构和硬度的影响.结果表明,前驱体碳化复合技术制备的Ti-Fe-C系等离子熔覆复合粉末中C/Ti原子比是影响涂层相组成、显微结构和硬度的关键因素.C/Ti原子比不同,涂层的相组成和硬度不同;随着C/Ti原子比增大,涂层中TiC团聚富集区增大,涂层的孔隙率也随之增大.  相似文献   

15.
以La(NO3)3.6H2O、氨水和ZrC为原料,采用非均相沉淀-煅烧法制备La2O3包覆ZrC复合粉末。采用XRD、SEM、EDS等检测方法,对包覆前驱体粉末和La2O3/ZrC复合粉末的成分、结构和组织均匀性进行表征。结果表明:前驱体粉末在750℃下煅烧2 h后,全部转化为La2O3,粉末为近球形,未发生长大;La2O3/ZrC复合粉末的粒径为60~80 nm;包覆后粉末的Zeta电位由48.28 mV变为5.376 mV,ZrC被连续且均匀的La2O3纳米级壳体层包覆。  相似文献   

16.
通过选择性控制合成条件,制备一种新型的纤维状镍钴合金粉末前驱体。该前驱体中镍、钴摩尔配比精确。采用X-射线衍射仪(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)和能谱(EDS)研究前驱体粉末的成分与形貌;考察溶液pH值、反应温度、金属离子浓度和表面活性剂对前驱体粉末的形貌和分散性的影响。结果表明:前驱体的形貌取决于前驱体中氨的含量,这种纤维状前驱体为一种复杂的含氨草酸镍钴复盐。形貌控制合成纤维状镍钴合金粉末前驱体的最佳条件为:氨作为配位剂和pH值调节剂,草酸为沉淀剂,反应温度为50~65°C,镍、钴离子总浓度为0.5~0.8mol/L,PVP为分散剂,溶液pH值控制在8.0~8.4.  相似文献   

17.
纳米晶氮化铝粉料的制备   总被引:1,自引:0,他引:1  
采用溶胶-凝胶工艺结合碳热氮化还原法进行纳米晶AlN粉末的制备和表征.以异丙醇铝((C3H7O)3Al)、蔗糖、尿素((NH2)2CO)为原料,通过控制硝酸和水的加入量,制备出透明的溶胶,经浓缩后得到透明的凝胶,干燥后得到分子水平混合的铝源和碳源的前驱体,经裂解、碳热氮化还原法制备出纳米晶AlN粉末.系统研究了C/Al比、添加尿素、碳热氮化还原反应的温度和时间等因素对合成粉料特性的影响,并进一步优化了制备工艺参数.采用XRD、BET等对合成产物的特性进行了分析和表征.通过原料组成、工艺参数的优化,制备出高纯纳米晶AlN粉末,其晶粒尺寸可达23 nm,除碳后比表面积可达70m2/g.  相似文献   

18.
采用前驱体碳化复合技术利用钛铁粉为原料制备Ti-Fe-Ni-C和Ti-Fe-C系粉末,并通过反应等离子喷涂技术(RPs)原位合成并沉积了Tic/Fe-Ni和TiC/Fe金属陶瓷复合涂层.利用XRD、SEM和EDS研究了复合粉末和不同基体涂层的成分、组织结构,测量了2种涂层的显微硬度和磨损量.结果表明:采用前驱体碳化复合技术制备的反应喷涂复合粉末粒度均匀、无有害相生成;制备的复合涂层由不同TiC颗粒含量的片层组织叠加而成;TiC颗粒大致呈球形,基体主要为Fe及Fe、Ni固溶体.Tic/Fe-Ni涂层较TiC/Fe涂层组织更加均匀、致密,且具有较高的显微硬度和较好的耐磨性.  相似文献   

19.
本文通过实验探索了水溶化学法制备纳米WC/C0复合粉工艺,研究了影响喷雾转换、锻烧、碳化和调碳的工艺因素,找到了满足纳米WC/Co复合粉制备的工艺参数。在Kear等人的经典合成技术中,碳化钨钴纳米复合材料是由喷雾转化水溶液的化学计量量的水溶性钨源和钴源,然后用流化床通氢将钨钴氧化物还原为金属钨和钴,之后在一个充满CO/CO2的气体环境中将金属钨和钴碳化成纳米WUCo复合粉末。本研究不同于Kear等人的处理方法,涉及的WC/C0使用水溶性溶液钨、钴和碳前躯体加工的纳米复合材料,大量的WGCo纳米复合粉体是将钨、钴和碳在分子级水平上混合制备成一个复杂的前驱体粉末的独特方案,前驱体粉末在煅烧炉充满惰性气体约100撕00cC的温度下转化成一个含有W-Co-C-0的预复合粉粉末,随后在碳化炉低于1000℃的温度下碳化。实验表明,水溶化学法生产的纳米WC/Co复合粉较常规方法,具有晶粒细而均匀、流动性好等特点,更适于高性能硬质合金的生产。  相似文献   

20.
以偏钨酸铵水合物和可食用蔗糖为原料,在液相均相反应体系中制备出前驱体粉末,再采用还原-碳化法合成纳米碳化钨(WC)粉末。分别使用X射线衍射仪和扫描电镜来表征粉末试样的物相组成和微观结构,并且分析了合成机理。结果表明:当合成温度为1400℃时,可以制备出单相WC粉末,当合成温度为1350℃时,可以获得等轴状WC颗粒。然而,合成温度达到1450℃时,出现条状颗粒和异常长大的颗粒。此外,引入过量C源有利于碳化反应的进行,还能通过增加反应接触面积和缩短C原子扩散距离来细化WC颗粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号