首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Integrated Framework for Semantic Annotation and Adaptation   总被引:1,自引:1,他引:0  
Tools for the interpretation of significant events from video and video clip adaptation can effectively support automatic extraction and distribution of relevant content from video streams. In fact, adaptation can adjust meaningful content, previously detected and extracted, to the user/client capabilities and requirements. The integration of these two functions is increasingly important, due to the growing demand of multimedia data from remote clients with limited resources (PDAs, HCCs, Smart phones). In this paper we propose an unified framework for event-based and object-based semantic extraction from video and semantic on-line adaptation. Two cases of application, highlight detection and recognition from soccer videos and people behavior detection in domotic* applications, are analyzed and discussed.Domotics is a neologism coming from the Latin word domus (home) and informatics.Marco Bertini has a research grant and carries out his research activity at the Department of Systems and Informatics at the University of Florence, Italy. He received a M.S. in electronic engineering from the University of Florence in 1999, and Ph.D. in 2004. His main research interest is content-based indexing and retrieval of videos. He is author of more than 25 papers in international conference proceedings and journals, and is a reviewer for international journals on multimedia and pattern recognition.Rita Cucchiara (Laurea Ingegneria Elettronica, 1989; Ph.D. in Computer Engineering, University of Bologna, Italy 1993). She is currently Full Professor in Computer Engineering at the University of Modena and Reggio Emilia (Italy). She was formerly Assistant Professor (‘93–‘98) at the University of Ferrara, Italy and Associate Professor (‘98–‘04) at the University of Modena and Reggio Emilia, Italy. She is currently in the Faculty staff of Computer Engenering where has in charges the courses of Computer Architectures and Computer Vision.Her current interests include pattern recognition, video analysis and computer vision for video surveillance, domotics, medical imaging, and computer architecture for managing image and multimedia data.Rita Cucchiara is author and co-author of more than 100 papers in international journals, and conference proceedings. She currently serves as reviewer for many international journals in computer vision and computer architecture (e.g. IEEE Trans. on PAMI, IEEE Trans. on Circuit and Systems, Trans. on SMC, Trans. on Vehicular Technology, Trans. on Medical Imaging, Image and Vision Computing, Journal of System architecture, IEEE Concurrency). She participated at scientific committees of the outstanding international conferences in computer vision and multimedia (CVPR, ICME, ICPR, ...) and symposia and organized special tracks in computer architecture for vision and image processing for traffic control. She is in the editorial board of Multimedia Tools and Applications journal. She is member of GIRPR (Italian chapter of Int. Assoc. of Pattern Recognition), AixIA (Ital. Assoc. Of Artificial Intelligence), ACM and IEEE Computer Society.Alberto Del Bimbo is Full Professor of Computer Engineering at the Università di Firenze, Italy. Since 1998 he is the Director of the Master in Multimedia of the Università di Firenze. At the present time, he is Deputy Rector of the Università di Firenze, in charge of Research and Innovation Transfer. His scientific interests are Pattern Recognition, Image Databases, Multimedia and Human Computer Interaction. Prof. Del Bimbo is the author of over 170 publications in the most distinguished international journals and conference proceedings. He is the author of the “Visual Information Retrieval” monography on content-based retrieval from image and video databases edited by Morgan Kaufman. He is Member of IEEE (Institute of Electrical and Electronic Engineers) and Fellow of IAPR (International Association for Pattern Recognition). He is presently Associate Editor of Pattern Recognition, Journal of Visual Languages and Computing, Multimedia Tools and Applications Journal, Pattern Analysis and Applications, IEEE Transactions on Multimedia, and IEEE Transactions on Pattern Analysis and Machine Intelligence. He was the Guest Editor of several special issues on Image databases in highly respected journals.Andrea Prati (Laurea in Computer Engineering, 1998; PhD in Computer Engineering, University of Modena and Reggio Emilia, 2002). He is currently an assistant professor at the University of Modena and Reggio Emilia (Italy), Faculty of Engineering, Dipartimento di Scienze e Metodi dell’Ingegneria, Reggio Emilia. During last year of his PhD studies, he has spent six months as visiting scholar at the Computer Vision and Robotics Research (CVRR) lab at University of California, San Diego (UCSD), USA, working on a research project for traffic monitoring and management through computer vision. His research interests are mainly on motion detection and analysis, shadow removal techniques, video transcoding and analysis, computer architecture for multimedia and high performance video servers, video-surveillance and domotics. He is author of more than 60 papers in international and national conference proceedings and leading journals and he serves as reviewer for many international journals in computer vision and computer architecture. He is a member of IEEE, ACM and IAPR.  相似文献   

2.
Multi-attribute motion data can be generated in many applications/ devices, such as motion capture devices and animations. It can have dozens of attributes, thousands of rows, and even similar motions can have different durations and different speeds at corresponding parts. There are no row-to-row correspondences between data matrices of two motions. To be classified and recognized, multi-attribute motion data of different lengths are reduced to feature vectors by using the properties of singular value decomposition (SVD) of motion data. The reduced feature vectors of similar motions are close to each other, while reduced feature vectors are different from each other if their motions are different. By applying support vector machines (SVM) to the feature vectors, we efficiently classify and recognize real-world multi-attribute motion data. With our data set of more than 300 motions with different lengths and variations, SVM outperforms classification by related similarity measures, in terms of accuracy and CPU time. The performance of our approach shows its feasibility of real-time applications to real-world data. Chuanjun Li is a Ph.D. candidate in Computer Science at the University of Texas at Dallas. His Ph.D. research works primarily on efficient segmentation and recognition of human motion streams, and development of indexing and clustering techniques for the multi-attribute motion data as well as classification of motion data. Dr. Latifur R. Khan has been an Assistant Professor of Computer Science Department at University of Texas at Dallas since September, 2000. He received his Ph.D. and M.S. degree in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh in November 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, NOKIA, Alcatel, USA and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters, and conference papers focusing in the areas of: database systems, multimedia information management, and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g., IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM Fourteenth Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005, and International Conference on Cooperative Information Systems (CoopIS 2005), and program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Dr. Balakrishnan Prabhakaran is currently with the Department of Computer Science, University of Texas at Dallas. Dr. B. Prabhakaran has been working in the area of multimedia systems: multimedia databases, authoring & presentation, resource management, and scalable web-based multimedia presentation servers. He has published several research papers in prestigious conferences and journals in this area.Dr. Prabhakaran received the NSF CAREER Award FY 2003 for his proposal on Animation Databases. Dr. Prabhakaran has served as an Associate Chair of the ACM Multimedia’2003 (November 2003, California), ACM MM 2000 (November 2000, Los Angeles), and ACM Multimedia’99 conference (Florida, November 1999). He has served as guest-editor (special issue on Multimedia Authoring and Presentation) for ACM Multimedia Systems journal. He is also serving on the editorial board of Multimedia Tools and Applications Journal, Kluwer Academic Publishers. He has also served as program committee member on several multimedia conferences and workshops. Dr. Prabhakaran has presented tutorials in several conferences on topics such as network resource management, adaptive multimedia presentations, and scalable multimedia servers.B. Prabhakaran has served as a visiting research faculty with the Department of Computer Science, University of Maryland, College Park. He also served as a faculty in the Department of Computer Science, National University of Singapore as well as in the Indian Institute of Technology, Madras, India  相似文献   

3.
Supervised tensor learning   总被引:12,自引:1,他引:12  
Tensor representation is helpful to reduce the small sample size problem in discriminative subspace selection. As pointed by this paper, this is mainly because the structure information of objects in computer vision research is a reasonable constraint to reduce the number of unknown parameters used to represent a learning model. Therefore, we apply this information to the vector-based learning and generalize the vector-based learning to the tensor-based learning as the supervised tensor learning (STL) framework, which accepts tensors as input. To obtain the solution of STL, the alternating projection optimization procedure is developed. The STL framework is a combination of the convex optimization and the operations in multilinear algebra. The tensor representation helps reduce the overfitting problem in vector-based learning. Based on STL and its alternating projection optimization procedure, we generalize support vector machines, minimax probability machine, Fisher discriminant analysis, and distance metric learning, to support tensor machines, tensor minimax probability machine, tensor Fisher discriminant analysis, and the multiple distance metrics learning, respectively. We also study the iterative procedure for feature extraction within STL. To examine the effectiveness of STL, we implement the tensor minimax probability machine for image classification. By comparing with minimax probability machine, the tensor version reduces the overfitting problem. We focus on the convex optimization-based binary classification learning algorithms in this paper. This is because the solution to a convex optimization-based learning algorithm is unique. Dacheng Tao received the B.Eng. degree from the University of Science and Technology of China (USTC), the MPhil degree from the Chinese University of Hong Kong (CUHK) and the PhD from the University of London (Birkbeck). He will join the Department of Computing in the Hong Kong Polytechnic University as an assistant professor. His research interests include biometric research, discriminant analysis, support vector machine, convex optimization for machine learning, multilinear algebra, multimedia information retrieval, data mining, and video surveillance. He published extensively at TPAMI, TKDE, TIP, TMM, TCSVT, CVPR, ICDM, ICASSP, ICIP, ICME, ACM Multimedia, ACM KDD, etc. He gained several Meritorious Awards from the Int’l Interdisciplinary Contest in Modeling, which is the highest level mathematical modeling contest in the world, organized by COMAP. He is a guest editor for special issues of the Int’l Journal of Image and Graphics (World Scientific) and the Neurocomputing (Elsevier). Xuelong Li works at the University of London. He has published in journals (IEEE T-PAMI, T-CSVT, T-IP, T-KDE, TMM, etc.) and conferences (IEEE CVPR, ICASSP, ICDM, etc.). He is an Associate Editor of IEEE T-SMC, Part C, Neurocomputing, IJIG (World Scientific), and Pattern Recognition (Elsevier). He is also an Editor Board Member of IJITDM (World Scientific) and ELCVIA (CVC Press). He is a Guest Editor for special issues of IJCM (Taylor and Francis), IJIG (World Scientific), and Neurocomputing (Elsevier). He co-chaired the 5th Annual UK Workshop on Computational Intelligence and the 6th the IEEE Int’l Conf. on Machine Learning and Cybernetics. He was also a publicity chair of the 7th IEEE Int’l Conf. on Data Mining and the 4th Int’l Conf. on Image and Graphics. He has been on the program committees of more than 50 conferences and workshops. Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, AAAI, ICML, KDD, ICDM, and WWW, as well as 12 books and conference proceedings. Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE Computer Society), the Founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AIKP). He is the 2004 ACM SIGKDD Service Award winner. Weiming Hu received the Ph.D. degree from the Department of Computer Science and Engineering, Zhejiang University. From April 1998 to March 2000, he was a Postdoctoral Research Fellow with the Institute of Computer Science and Technology, Founder Research and Design Center, Peking University. Since April 1998, he has been with the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences. Now he is a Professor and a Ph.D. Student Supervisor in the laboratory. His research interests are in visual surveillance, neural networks, filtering of Internet objectionable information, retrieval of multimedia, and understanding of Internet behaviors. He has published more than 80 papers on national and international journals, and international conferences. Stephen J. Maybank received a BA in Mathematics from King’s college, Cambridge in 1976 and a PhD in Computer Science from Birkbeck College, University of London in 1988. He was a research scientist at GEC from 1980 to 1995, first at MCCS, Frimley and then, from 1989, at the GEC Marconi Hirst Research Centre in London. In 1995 he became a lecturer in the Department of Computer Science at the University of Reading and in 2004 he became a professor in the School of Computer Science and Information Systems at Birkbeck College, University of London. His research interests include camera calibration, visual surveillance, tracking, filtering, applications of projective geometry to computer vision and applications of probability, statistics and information theory to computer vision. He is the author of more than 90 scientific publications and one book. He is a Fellow of the Institute of Mathematics and its Applications, a Fellow of the Royal Statistical Society and a Senior Member of the IEEE. For further information see http://www.dcs.bbk.ac.uk/~sjmaybank.  相似文献   

4.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

5.
Variable bit rate (VBR) compression for media streams allocates more bits to complex scenes and fewer bits to simple scenes. This results in a higher and more uniform visual and aural quality. The disadvantage of the VBR technique is that it results in bursty network traffic and uneven resource utilization when streaming media. In this study we propose an online media transmission smoothing technique that requires no a priori knowledge of the actual bit rate. It utilizes multi-level buffer thresholds at the client side that trigger feedback information sent to the server. This technique can be applied to both live captured streams and stored streams without requiring any server side pre-processing. We have implemented this scheme in our continuous media server and verified its operation across real world LAN and WAN connections. The results show smoother transmission schedules than any other previously proposed online technique. This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), and IIS-0082826, DARPA and USAF under agreement nr. F30602-99-1-0524, and unrestricted cash/equipment gifts from NCR, IBM, Intel and SUN. Roger Zimmermann is currently a Research Assistant Professor with the Computer Science Department and a Research Area Director with the Integrated Media Systems Center (IMSC) at the University of Southern California. His research activities focus on streaming media architectures, peer-to-peer systems, immersive environments, and multimodal databases. He has made significant contributions in the areas of interactive and high quality video streaming, collaborative large-scale group communications, and mobile location-based services. Dr. Zimmermann has co-authored a book, a patent and more than seventy conference publications, journal articles and book chapters in the areas of multimedia and databases. He was the co-chair of the ACM NRBC 2004 workshop, the Open Source Software Competition of the ACM Multimedia 2004 conference, the short paper program systems track of ACM Multimedia 2005 and will be the proceedings chair of ACM Multimedia 2006. He is on the editorial board of SIGMOD DiSC, the ACM Computers in Entertainment magazine and the International Journal of Multimedia Tools and Applications. He has served on many conference program committees such as ACM Multimedia, SPIE MMCN and IEEE ICME. Cyrus Shahabi is currently an Associate Professor and the Director of the Information Laboratory (InfoLAB) at the Computer Science Department and also a Research Area Director at the NSF's Integrated Media Systems Center (IMSC) at the University of Southern California. He received his M.S. and Ph.D. degrees in Computer Science from the University of Southern California in May 1993 and August 1996, respectively. His B.S. degree is in Computer Engineering from Sharif University of Technology, Iran. He has two books and more than hundred articles, book chapters, and conference papers in the areas of databases and multimedia. Dr. Shahabi's current research interests include Peer-to-Peer Systems, Streaming Architectures, Geospatial Data Integration and Multidimensional Data Analysis. He is currently an associate editor of the IEEE Transactions on Parallel and Distributed Systems (TPDS) and on the editorial board of ACM Computers in Entertainment magazine. He is also the program committee chair of ICDE NetDB 2005 and ACM GIS 2005. He serves on many conference program committees such as IEEE ICDE 2006, ACM CIKM 2005, SSTD 2005 and ACM SIGMOD 2004. Dr. Shahabi is the recipient of the 2002 National Science Foundation CAREER Award and 2003 Presidential Early Career Awards for Scientists and Engineers (PECASE). In 2001, he also received an award from the Okawa Foundations. Kun Fu is currently a Ph.D candidate in computer science from the University of Southern California. He did research at the Data Communication Technology Research Institute and National Data Communication Engineering Center in China prior to coming to the United States and is currently working on large scale data stream recording architectures at the NSF's Integrated Media System Center (IMSC) and Data Management Research Laboratory (DMRL) at the Computer Science Department at USC. He received an MS in engineering science from the University of Toledo. He is a member of the IEEE. His research interests are in the area of scalable streaming architectures, distributed real-time systems, and multimedia computing and networking. Mehrdad Jahangiri was born in Tehran, Iran. He received the B.S. degree in Civil Engineering from University of Tehran at Tehran, in 1999. He is currently working towards the Ph.D. degree in Computer Science at the University of Southern California. He is currently a research assistant working on multidimensional data analysis at Integrated Media Systems Center (IMSC)—Information Laboratory (InfoLAB) at the Computer Science Department of the University of Southern California.  相似文献   

6.
The CPR Model for Summarizing Video   总被引:2,自引:0,他引:2  
Most past work on video summarization has been based on selecting key frames from videos. We propose a model of video summarization based on three important parameters: Priority (of frames), Continuity (of the summary), and non-Repetition (of the summary). In short, a summary must include high priority frames and must be continuous and non-repetitive. An optimal summary is one that maximizes an objective function based on these three parameters. We show examples of how CPR parameters can be computed and provide algorithms to find optimal summaries based on the CPR approach. Finally, we briefly report on the performance of these algorithms.Marat Fayzullin has received his PhD degree in Computer Science from the University of Maryland, College Park, in 2004. He has done research in Distributed Simulation Environments, Multimedia Database Algebras, and Automated Content Summarization. His topics of interest also include Mobile Agent Networks and Reasoning with Semantic Networks.V.S. Subrahmanian received his Ph.D. in Computer Science from Syracuse University in 1989. Since then, he has been on the faculty of the Computer Science Department at the University of Maryland, College Park, where he currently holds the rank of Professor. He also serves as Director of the University of Marylands Institute for Advanced Computer Studies (UMIACS) established by the State of Maryland in the mid-1980s to pursue interdisciplinary research involving IT. He received the NSF Young Investigator Award in 1993 and the Distinguished Young Scientist Award from the Maryland Academy of Science/Maryland Science Center in 1997. Prof. Subrahmanian is recognized for his work on nonmonotonic and probabilistic logics, inconsistency management in databases, database models views and inference, rule bases, heterogeneous databases, multimedia databases, and probabilistic databases. More recently, he has developed techniques to agentize legacy software, allowing multiple software modules to dynamically collaborate with each other to solve complex problems. He has edited two books, one on nonmonotonic reasoning (MIT Press) and one on multimedia databases (Springer). He has co-authored an advanced database textbook (Morgan Kaufman, 1997) and a book on heterogeneous software agents. He is the sole author of the best known textbook on multimedia databases (Morgan Kaufmann)—a second edition of this book is under preparation. Prof. Subrahmanian has given invited talks at numerous national and international conferences—in addition, he has served on numerous conference and funding panels, as well as on the program committees of numerous conferences. He has also chaired several conferences. Prof. Subrahmanian is or has previously been on the editorial board of IEEE Transactions on Knowledge and Data Engineering, Artificial Intelligence Communications, Multimedia Tools and Applications, Journal of Logic Programming, Annals of Mathematics and Artificial Intelligence, Distributed and Parallel Database Journal, and Theory and Practice of Logic Programming.Prof. Subrahmanian has served on DARPAs (Defense Advanced Research Projects Agency) Executive Advisory Council on Advanced Logistics and as an ad-hoc member of the US Air Force Science Advisory Board (2001).Antonio Picariello received the Laurea degree in Electronics Engineering from the University of Napoli, Italy, in 1991. In 1993 he joined the Istituto Ricerca Sui Sistimi Informatici Paralleli, The National Research Council, Napoli, Italy. He received a Ph.D. degree in Computer Science and Engineering in 1998 from the University of Naples Federico II. In 1999, he joined the Dipartimento di Informatica e Sistemistica, University of Napoli Federico II, Italy, and is currently an Associate Professor of Data Base. He has been active in the field of Computer Vision, Medical Image Processing and Pattern Recognition, Object-Oriented models for image processing, Multimedia Data Base and Information Retrieval. His current research interests lie in Knowledge Extraction and Management, Multimedia Integration and Image and Video databases. He is a member of the International Association of Pattern Recognition.Maria Luisa Sapino has got her master degree and Ph.D. in Computer Science at the University of Torino, where shes currently Associate Professor. She initially worked in the area of logic programming and artificial intelligence, specifically interested in the semantics of negation in logic programming, and in the abductive extensions of logic programs. Her current research interests include heterogeneous and multimedia databases, in particular similarity based information retrieval, and modeling and querying multimedia presentations. She has been serving as a reviewer for several international conferences and journals.  相似文献   

7.
Image categorization is undoubtedly one of the most recent and challenging problems faced in Computer Vision. The scientific literature is plenty of methods more or less efficient and dedicated to a specific class of images; further, commercial systems are also going to be advertised in the market. Nowadays, additional data can also be attached to the images, enriching its semantic interpretation beyond the pure appearance. This is the case of geo-location data that contain information about the geographical place where an image has been acquired. This data allow, if not require, a different management of the images, for instance, to the purpose of easy retrieval from a repository, or of identifying the geographical place of an unknown picture, given a geo-referenced image repository. This paper constitutes a first step in this sense, presenting a method for geo-referenced image categorization, and for the recognition of the geographical location of an image without such information available. The solutions presented are based on robust pattern recognition techniques, such as the probabilistic Latent Semantic Analysis, the Mean Shift clustering and the Support Vector Machines. Experiments have been carried out on a couple of geographical image databases: results are actually very promising, opening new interesting challenges and applications in this research field. The article is published in the original. Marco Cristani received the Laurea degree in 2002 and the Ph.D. degree in 2006, both in Computer Science from the University of Verona, Verona, Italy. He was a visiting Ph.D. student at the Computer Vision Lab, Institute for Robotics and Intelligent Systems School of Engineering (IRIS), University of Southern California, Los Angeles, in 2004–2005. He is now an Assistant Professor with the Department of Computer Science, University of Verona, working with the Vision, Image Processing and Sounds (VIPS) Lab. His main research interests include statistical pattern recognition, generative modeling via graphical models, and non-parametric data fusion techniques, with applications on surveillance, segmentation and image and video retrieval. He is the author of several papers in the above subjects and a reviewer for several international conferences and journals. Alessandro Perina received the BD and MS degrees in Information Technologies and Intelligent and Multimedia Systems from the University of Verona, Verona, Italy, in 2004 and 2006, respectively. He is currently a Ph.D. candidate in the Computer Science Department at the University of Verona. His research interests include computer vision, machine learning and pattern recognition. He is a student member of the IEEE. Umberto Castellani is Ricercatore (i.e., Research Assistant) of Department of Computer Science at University of Verona. He received his Dottorato di Ricerca (Ph.D.) in Computer Science from the University of Verona in 2003 working on 3D data modelling and reconstruction. During his Ph.D., he had been Visiting Research Fellow at the Machine Vision Unit of the Edinburgh University, in 2001. In 2007 he has been an Invited Professor for two months at the LASMEA laboratory in Clermont-Ferrand, France. In 2008, he has been Visiting Researcher for two months at the PRIP laboratory of the Michigan State University (USA). His main research interests concern the processing of 3D data coming from different acquisition systems such as 3D models from 3D scanners, acoustic images for the vision in underwater environment, and MRI scans for biomedical applications. The addressed methodologies are focused on the intersections among Machine Learning, Computer Vision and Computer Graphics. Vittorio Murino received the Laurea degree in electronic engineering in 1989 and the Ph.D. degree in electronic engineering and computer science in 1993, both from the University of Genoa, Genoa, Italy. He is a Full Professor with the Department of Computer Science, University of Verona. From 1993 to 1995, he was a Postdoctoral Fellow in the Signal Processing and Understanding Group, Department of Biophysical and electronic Engineering, University of Genoa, where he supervised of research activities on image processing for object recognition and pattern classification in underwater environments. From 1995 to 1998, he was an Assistant Professor of the Department of Mathematics and Computer Science, University of Udine, Udine, Italy. Since 1998, he has been with the University of Verona, where he founded and is responsible for the Vision, Image processing, and Sound (VIPS) Laboratory. He is scientifically responsible for several national and European projects and is an Evaluator for the European Commission of research project proposals related to different scientific programmes and frameworks. His main research interests include computer vision and pattern recognition, probabilistic techniques for image and video processing, and methods for integrating graphics and vision. He is author or co-author of more than 150 papers published in refereed journals and international conferences. Dr. Murino is a referee for several international journals, a member of the technical committees for several conferences (ECCV, ICPR, ICIP), and a member of the editorial board of Pattern Recognition, IEEE Transactions on Systems, Man, and Cybernetics, Pattern Analysis and Applications and Electronic Letters on Computer Vision and Image Analysis (ELCVIA). He was the promotor and Guest Editor off our special issues of Pattern Recognition and is a Fellow of the IAPR.  相似文献   

8.
This paper considers the problem of mining closed frequent itemsets over a data stream sliding window using limited memory space. We design a synopsis data structure to monitor transactions in the sliding window so that we can output the current closed frequent itemsets at any time. Due to time and memory constraints, the synopsis data structure cannot monitor all possible itemsets. However, monitoring only frequent itemsets will make it impossible to detect new itemsets when they become frequent. In this paper, we introduce a compact data structure, the closed enumeration tree (CET), to maintain a dynamically selected set of itemsets over a sliding window. The selected itemsets contain a boundary between closed frequent itemsets and the rest of the itemsets. Concept drifts in a data stream are reflected by boundary movements in the CET. In other words, a status change of any itemset (e.g., from non-frequent to frequent) must occur through the boundary. Because the boundary is relatively stable, the cost of mining closed frequent itemsets over a sliding window is dramatically reduced to that of mining transactions that can possibly cause boundary movements in the CET. Our experiments show that our algorithm performs much better than representative algorithms for the sate-of-the-art approaches. Yun Chi is currently a Ph.D. student at the Department of Computer Science, UCLA. His main areas of research include database systems, data mining, and bioinformatics. For data mining, he is interested in mining labeled trees and graphs, mining data streams, and mining data with uncertainty. Haixun Wang is currently a research staff member at IBM T. J. Watson Research Center. He received the B.S. and the M.S. degree, both in computer science, from Shanghai Jiao Tong University in 1994 and 1996. He received the Ph.D. degree in computer science from the University of California, Los Angeles in 2000. He has published more than 60 research papers in referred international journals and conference proceedings. He is a member of the ACM, the ACM SIGMOD, the ACM SIGKDD, and the IEEE Computer Society. He has served in program committees of international conferences and workshops, and has been a reviewer for some leading academic journals in the database field. Philip S. Yureceived the B.S. Degree in electrical engineering from National Taiwan University, the M.S. and Ph.D. degrees in electrical engineering from Stanford University, and the M.B.A. degree from New York University. He is with the IBM Thomas J. Watson Research Center and currently manager of the Software Tools and Techniques group. His research interests include data mining, Internet applications and technologies, database systems, multimedia systems, parallel and distributed processing, and performance modeling. Dr. Yu has published more than 430 papers in refereed journals and conferences. He holds or has applied for more than 250 US patents.Dr. Yu is a Fellow of the ACM and a Fellow of the IEEE. He is associate editors of ACM Transactions on the Internet Technology and ACM Transactions on Knowledge Discovery in Data. He is a member of the IEEE Data Engineering steering committee and is also on the steering committee of IEEE Conference on Data Mining. He was the Editor-in-Chief of IEEE Transactions on Knowledge and Data Engineering (2001–2004), an editor, advisory board member and also a guest co-editor of the special issue on mining of databases. He had also served as an associate editor of Knowledge and Information Systems. In addition to serving as program committee member on various conferences, he will be serving as the general chairman of 2006 ACM Conference on Information and Knowledge Management and the program chairman of the 2006 joint conferences of the 8th IEEE Conference on E-Commerce Technology (CEC' 06) and the 3rd IEEE Conference on Enterprise Computing, E-Commerce and E-Services (EEE' 06). He was the program chairman or co-chairs of the 11th IEEE International Conference on Data Engineering, the 6th Pacific Area Conference on Knowledge Discovery and Data Mining, the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, the 2nd IEEE International Workshop on Research Issues on Data Engineering:Transaction and Query Processing, the PAKDD Workshop on Knowledge Discovery from Advanced Databases, and the 2nd IEEE International Workshop on Advanced Issues of E-Commerce and Web-based Information Systems. He served as the general chairman of the 14th IEEE International Conference on Data Engineering and the general co-chairman of the 2nd IEEE International Conference on Data Mining. He has received several IBM honors including 2 IBM Outstanding Innovation Awards, an Outstanding Technical Achievement Award, 2 Research Division Awards and the 84th plateau of Invention Achievement Awards. He received an Outstanding Contributions Award from IEEE International Conference on Data Mining in 2003 and also an IEEE Region 1 Award for “promoting and perpetuating numerous new electrical engineering concepts" in 1999. Dr. Yu is an IBM Master Inventor. Richard R. Muntz is a Professor and past chairman of the Computer Science Department, School of Engineering and Applied Science, UCLA. His current research interests are sensor rich environments, multimedia storage servers and database systems, distributed and parallel database systems, spatial and scientific database systems, data mining, and computer performance evaluation. He is the author of over one hundred and fifty research papers.Dr. Muntz received the BEE from Pratt Institute in 1963, the MEE from New York University in 1966, and the Ph.D. in Electrical Engineering from Princeton University in 1969. He is a member of the Board of Directors for SIGMETRICS and past chairman of IFIP WG7.3 on performance evaluation. He was a member of the Corporate Technology Advisory Board at NCR/Teradata, a member of the Science Advisory Board of NASA's Center of Excellence in Space Data Information Systems, and a member of the Goddard Space Flight Center Visiting Committee on Information Technology. He recently chaired a National Research Council study on “The Intersection of Geospatial Information and IT” which was published in 2003. He was an associate editor for the Journal of the ACM from 1975 to 1980 and the Editor-in-Chief of ACM Computing Surveys from 1992 to 1995. He is a Fellow of the ACM and a Fellow of the IEEE.  相似文献   

9.
One major challenge in the content-based image retrieval (CBIR) and computer vision research is to bridge the so-called “semantic gap” between low-level visual features and high-level semantic concepts, that is, extracting semantic concepts from a large database of images effectively. In this paper, we tackle the problem by mining the decisive feature patterns (DFPs). Intuitively, a decisive feature pattern is a combination of low-level feature values that are unique and significant for describing a semantic concept. Interesting algorithms are developed to mine the decisive feature patterns and construct a rule base to automatically recognize semantic concepts in images. A systematic performance study on large image databases containing many semantic concepts shows that our method is more effective than some previously proposed methods. Importantly, our method can be generally applied to any domain of semantic concepts and low-level features. Wei Wang received his Ph.D. degree in Computing Science and Engineering from the State University of New York (SUNY) at Buffalo in 2004, under Dr. Aidong Zhang's supervision. He received the B.Eng. in Electrical Engineering from Xi'an Jiaotong University, China in 1995 and the M.Eng. in Computer Engineering from National University of Singapore in 2000, respectively. He joined Motorola Inc. in 2004, where he is currently a senior research engineer in Multimedia Research Lab, Motorola Applications Research Center. His research interests can be summarized as developing novel techniques for multimedia data analysis applications. He is particularly interested in multimedia information retrieval, multimedia mining and association, multimedia database systems, multimedia processing and pattern recognition. He has published 15 research papers in refereed journals, conferences, and workshops, has served in the organization committees and the program committees of IADIS International Conference e-Society 2005 and 2006, and has been a reviewer for some leading academic journals and conferences. In 2005, his research prototype of “seamless content consumption” was awarded the “most innovative research concept of the year” from the Motorola Applications Research Center. Dr. Aidong Zhang received her Ph.D. degree in computer science from Purdue University, West Lafayette, Indiana, in 1994. She was an assistant professor from 1994 to 1999, an associate professor from 1999 to 2002, and has been a professor since 2002 in the Department of Computer Science and Engineering at the State University of New York at Buffalo. Her research interests include bioinformatics, data mining, multimedia systems, content-based image retrieval, and database systems. She has authored over 150 research publications in these areas. Dr. Zhang's research has been funded by NSF, NIH, NIMA, and Xerox. Dr. Zhang serves on the editorial boards of International Journal of Bioinformatics Research and Applications (IJBRA), ACMMultimedia Systems, the International Journal of Multimedia Tools and Applications, and International Journal of Distributed and Parallel Databases. She was the editor for ACM SIGMOD DiSC (Digital Symposium Collection) from 2001 to 2003. She was co-chair of the technical program committee for ACM Multimedia 2001. She has also served on various conference program committees. Dr. Zhang is a recipient of the National Science Foundation CAREER Award and SUNY Chancellor's Research Recognition Award.  相似文献   

10.
On High Dimensional Projected Clustering of Data Streams   总被引:3,自引:0,他引:3  
The data stream problem has been studied extensively in recent years, because of the great ease in collection of stream data. The nature of stream data makes it essential to use algorithms which require only one pass over the data. Recently, single-scan, stream analysis methods have been proposed in this context. However, a lot of stream data is high-dimensional in nature. High-dimensional data is inherently more complex in clustering, classification, and similarity search. Recent research discusses methods for projected clustering over high-dimensional data sets. This method is however difficult to generalize to data streams because of the complexity of the method and the large volume of the data streams.In this paper, we propose a new, high-dimensional, projected data stream clustering method, called HPStream. The method incorporates a fading cluster structure, and the projection based clustering methodology. It is incrementally updatable and is highly scalable on both the number of dimensions and the size of the data streams, and it achieves better clustering quality in comparison with the previous stream clustering methods. Our performance study with both real and synthetic data sets demonstrates the efficiency and effectiveness of our proposed framework and implementation methods.Charu C. Aggarwal received his B.Tech. degree in Computer Science from the Indian Institute of Technology (1993) and his Ph.D. degree in Operations Research from the Massachusetts Institute of Technology (1996). He has been a Research Staff Member at the IBM T. J. Watson Research Center since June 1996. He has applied for or been granted over 50 US patents, and has published over 75 papers in numerous international conferences and journals. He has twice been designated Master Inventor at IBM Research in 2000 and 2003 for the commercial value of his patents. His contributions to the Epispire project on real time attack detection were awarded the IBM Corporate Award for Environmental Excellence in 2003. He has been a program chair of the DMKD 2003, chair for all workshops organized in conjunction with ACM KDD 2003, and is also an associate editor of the IEEE Transactions on Knowledge and Data Engineering Journal. His current research interests include algorithms, data mining, privacy, and information retrieval.Jiawei Han is a Professor in the Department of Computer Science at the University of Illinois at Urbana–Champaign. He has been working on research into data mining, data warehousing, stream and RFID data mining, spatiotemporal and multimedia data mining, biological data mining, social network analysis, text and Web mining, and software bug mining, with over 300 conference and journal publications. He has chaired or served in many program committees of international conferences and workshops, including ACM SIGKDD Conferences (2001 best paper award chair, 1996 PC co-chair), SIAM-Data Mining Conferences (2001 and 2002 PC co-chair), ACM SIGMOD Conferences (2000 exhibit program chair), International Conferences on Data Engineering (2004 and 2002 PC vice-chair), and International Conferences on Data Mining (2005 PC co-chair). He also served or is serving on the editorial boards for Data Mining and Knowledge Discovery, IEEE Transactions on Knowledge and Data Engineering, Journal of Computer Science and Technology, and Journal of Intelligent Information Systems. He is currently serving on the Board of Directors for the Executive Committee of ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD). Jiawei has received three IBM Faculty Awards, the Outstanding Contribution Award at the 2002 International Conference on Data Mining, ACM Service Award (1999) and ACM SIGKDD Innovation Award (2004). He is an ACM Fellow (since 2003). He is the first author of the textbook “Data Mining: Concepts and Techniques” (Morgan Kaufmann, 2001).Jianyong Wang received the Ph.D. degree in computer science in 1999 from the Institute of Computing Technology, the Chinese Academy of Sciences. Since then, he ever worked as an assistant professor in the Department of Computer Science and Technology, Peking (Beijing) University in the areas of distributed systems and Web search engines (May 1999–May 2001), and visited the School of Computing Science at Simon Fraser University (June 2001–December 2001), the Department of Computer Science at the University of Illinois at Urbana-Champaign (December 2001–July 2003), and the Digital Technology Center and Department of Computer Science and Engineering at the University of Minnesota (July 2003–November 2004), mainly working in the area of data mining. He is currently an associate professor in the Department of Computer Science and Technology, Tsinghua University, Beijing, China.Philip S. Yuis the manager of the Software Tools and Techniques group at the IBM Thomas J. Watson Research Center. The current focuses of the project include the development of advanced algorithms and optimization techniques for data mining, anomaly detection and personalization, and the enabling of Web technologies to facilitate E-commerce and pervasive computing. Dr. Yu,s research interests include data mining, Internet applications and technologies, database systems, multimedia systems, parallel and distributed processing, disk arrays, computer architecture, performance modeling and workload analysis. Dr. Yu has published more than 340 papers in refereed journals and conferences. He holds or has applied for more than 200 US patents. Dr. Yu is an IBM Master Inventor.Dr. Yu is a Fellow of the ACM and a Fellow of the IEEE. He will become the Editor-in-Chief of IEEE Transactions on Knowledge and Data Engineering on Jan. 2001. He is an associate editor of ACM Transactions of the Internet Technology and also Knowledge and Information Systems Journal. He is a member of the IEEE Data Engineering steering committee. He also serves on the steering committee of IEEE Intl. Conference on Data Mining. He received an IEEE Region 1 Award for “promoting and perpetuating numerous new electrical engineering concepts”. Philip S. Yu received the B.S. Degree in E.E. from National Taiwan University, Taipei, Taiwan, the M.S. and Ph.D. degrees in E.E. from Stanford University, and the M.B.A. degree from New York University.  相似文献   

11.
On-demand broadcast is an attractive data dissemination method for mobile and wireless computing. In this paper, we propose a new online preemptive scheduling algorithm, called PRDS that incorporates urgency, data size and number of pending requests for real-time on-demand broadcast system. Furthermore, we use pyramid preemption to optimize performance and reduce overhead. A series of simulation experiments have been performed to evaluate the real-time performance of our algorithm as compared with other previously proposed methods. The experimental results show that our algorithm substantially outperforms other algorithms over a wide range of workloads and parameter settings. The work described in this paper was partially supported by grants from CityU (Project No. 7001841) and RGC CERG Grant No. HKBU 2174/03E. This paper is an extended version of the paper “A preemptive scheduling algorithm for wireless real-time on-demand data broadcast” that appeared in the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Victor C. S. Lee received his Ph.D. degree in Computer Science from the City University of Hong Kong in 1997. He is now an Assistant Professor in the Department of Computer Science of the City University of Hong Kong. Dr. Lee is a member of the ACM, the IEEE and the IEEE Computer Society. He is currently the Chairman of the IEEE, Hong Kong Section, Computer Chapter. His research interests include real-time data management, mobile computing, and transaction processing. Xiao Wu received the B.Eng. and M.S. degrees in computer science from Yunnan University, Kunming, China, in 1999 and 2002, respectively. He is currently a Ph.D. candidate in the Department of Computer Science at the City University of Hong Kong. He was with the Institute of Software, Chinese Academy of Sciences, Beijing, China, between January 2001 and July 2002. From 2003 to 2004, he was with the Department of Computer Science of the City University of Hong Kong, Hong Kong, as a Research Assistant. His research interests include multimedia information retrieval, video computing and mobile computing. Joseph Kee-Yin NG received a B.Sc. in Mathematics and Computer Science, a M.Sc. in Computer Science, and a Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in the years 1986, 1988, and 1993, respectively. Prof. Ng is currently a professor in the Department of Computer Science at Hong Kong Baptist University. His current research interests include Real-Time Networks, Multimedia Communications, Ubiquitous/Pervasive Computing, Mobile and Location- aware Computing, Performance Evaluation, Parallel and Distributed Computing. Prof. Ng is the Technical Program Chair for TENCON 2006, General Co-Chair for The 11th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2005), Program Vice Chair for The 11th International Conference on Parallel and Distributed Systems (ICPADS 2005), Program Area-Chair for The 18th & 19th International Conference on Advanced Information Networking and Applications (AINA 2004 & AINA 2005), General Co-Chair for The International Computer Congress 1999 & 2001 (ICC’99 & ICC’01), Program Co-Chair for The Sixth International Conference on Real-Time Computing Systems and Applications (RTCSA’99) and General Co-Chair for The 1999 and 2001 International Computer Science Conference (ICSC’99 & ICSC’01). Prof. Ng is a member of the Editorial Board of Journal of Pervasive Computing and Communications, Journal of Ubiquitous Computing and Intelligence, Journal of Embedded Computing, and Journal of Microprocessors and Microsystems. He is the Associate Editor of Real-Time Systems Journal and Journal of Mobile Multimedia. He is also a guest editor of International Journal of Wireless and Mobile Computing for a special issue on Applications, Services, and Infrastructures for Wireless and Mobile Computing. Prof. Ng is currently the Region 10 Coordinator for the Chapter Activities Board of the IEEE Computer Society, and is the Coordinator of the IEEE Computer Society Distinguished Visitors Program (Asia/Pacific). He is a senior member of the IEEE and has been a member of the IEEE Computer Society since 1991. Prof. Ng has been an Exco-member (1993–95), General Secretary (1995–1997), Vice-Chair (1997–1999), Chair (1999–2001) and the Past Chair of the IEEE, Hong Kong Section, Computer Chapter. Prof. Ng received the Certificate of Appreciation for Services and Contribution (2004) from IEEE Hong Kong Section, the Certificate of Appreciation for Leadership and Service (2000–2001) from IEEE Region 10 and the IEEE Meritorious Service Award from IEEE Computer Society at 2004. He is also a member of the IEEE Communication Society, ACM and the Founding Member for the Internet Society (ISOC)-Hong Kong Chapter.  相似文献   

12.
Conventional approaches to image retrieval are based on the assumption that relevant images are physically near the query image in some feature space. This is the basis of the cluster hypothesis. However, semantically related images are often scattered across several visual clusters. Although traditional Content-based Image Retrieval (CBIR) technologies may utilize the information contained in multiple queries (gotten in one step or through a feedback process), this is often only a reformulation of the original query. As a result most of these strategies only get the images in some neighborhood of the original query as the retrieval result. This severely restricts the system performance. Relevance feedback techniques are generally used to mitigate this problem. In this paper, we present a novel approach to relevance feedback which can return semantically related images in different visual clusters by merging the result sets of multiple queries. We also provide experimental results to demonstrate the effectiveness of our approach.Xiangyu Jin received his B.S. and M.E. in Computer Science from the Nanjing University, China, in 1999 and 2002, respectively. He has a visiting student in Microsoft Research Asia (2001) and now is a Ph.D. candidate in the Department of Computer Science at the University of Virginia. His current research interest includes multimedia information retrieval and user interface study. He had the authored or co-authored about 20 publications in these areas.James French is currently a Research Associate Professor in the Department of Computer Science at the University of Virginia. He received a B.A. in Mathematics and M.S. and Ph.D. (1982) degrees in Computer Science, all at the University of Virginia. After several years in industry, he returned to the University of Virginia in 1987 as a Senior Scientist in the Institute for Parallel Computation and joined the Department of Computer Science in 1990. His current research interests include content-based retrieval and information retrieval in widely distributed information systems. He is the editor of five books, and the author or co-author of one book and over 75 papers and book chapters. Professor French is a member of the ACM, the IEEE Computer Society, ASIST, and Sigma Xi. At the time of this work he was on a leave of absence from the University of Virginia serving as a program director at the U.S. National Science Foundation.  相似文献   

13.
Semantic scene classification is an open problem in computer vision, especially when information from only a single image is employed. In applications involving image collections, however, images are clustered sequentially, allowing surrounding images to be used as temporal context. We present a general probabilistic temporal context model in which the first-order Markov property is used to integrate content-based and temporal context cues. The model uses elapsed time-dependent transition probabilities between images to enforce the fact that images captured within a shorter period of time are more likely to be related. This model is generalized in that it allows arbitrary elapsed time between images, making it suitable for classifying image collections. In addition, we derived a variant of this model to use in ordered image collections for which no timestamp information is available, such as film scans. We applied the proposed context models to two problems, achieving significant gains in accuracy in both cases. The two algorithms used to implement inference within the context model, Viterbi and belief propagation, yielded similar results with a slight edge to belief propagation. Matthew Boutell received the BS degree in Mathematical Science from Worcester Polytechnic Institute, Massachusetts, in 1993, the MEd degree from University of Massachusetts at Amherst in 1994, and the PhD degree in Computer Science from the University of Rochester, Rochester, NY, in 2005. He served for several years as a mathematics and computer science instructor at Norton High School and Stonehill College and as a research intern/consultant at Eastman Kodak Company. Currently, he is Assistant Professor of Computer Science and Software Engineering at Rose-Hulman Institute of Technology in Terre Haute, Indiana. His research interests include image understanding, machine learning, and probabilistic modeling. Jiebo Luo received his PhD degree in Electrical Engineering from the University of Rochester, Rochester, NY in 1995. He is a Senior Principal Scientist with the Kodak Research Laboratories. He was a member of the Organizing Committee of the 2002 IEEE International Conference on Image Processing and 2006 IEEE International Conference on Multimedia and Expo, a guest editor for the Journal of Wireless Communications and Mobile Computing Special Issue on Multimedia Over Mobile IP and the Pattern Recognition journal Special Issue on Image Understanding for Digital Photos, and a Member of the Kodak Research Scientific Council. He is on the editorial boards of the IEEE Transactions on Multimedia, Pattern Recognition, and Journal of Electronic Imaging. His research interests include image processing, pattern recognition, computer vision, medical imaging, and multimedia communication. He has authored over 100 technical papers and holds over 30 granted US patents. He is a Kodak Distinguished Inventor and a Senior Member of the IEEE. Chris Brown (BA Oberlin 1967, PhD University of Chicago 1972) is Professor of Computer Science at the University of Rochester. He has published in many areas of computer vision and robotics. He wrote COMPUTER VISION with his colleague Dana Ballard, and influential work on the “active vision” paradigm was reported in two special issues of the International Journal of Computer Vision. He edited the first two volumes of ADVANCES IN COMPUTER VISION for Erlbaum and (with D. Terzopoulos) REAL-TIME COMPUTER VISION, from Cambridge University Press. He is the co-editor of VIDERE, the first entirely on-line refereed computer vision journal (MIT Press). His most recent PhD students have done research in infrared tracking and face recognition, features and strategies for image understanding, augmented reality, and three-dimensional reconstruction algorithms. He supervised the undergraduate team that twice won the AAAI Host Robot competition (and came third in the Robot Rescue competition in 2003).  相似文献   

14.
15.
16.
17.
Environmental monitoring applications require seamless registration of optical data into large area mosaics that are geographically referenced to the world frame. Using frame-by-frame image registration alone, we can obtain seamless mosaics, but it will not exhibit geographical accuracy due to frame-to-frame error accumulation. On the other hand, the 3D geo-data from GPS, a laser profiler, an INS system provides a globally correct track of the motion without error propagation. However, the inherent (absolute) errors in the instrumentation are large for seamless mosaicing. The paper describes an effective two-track method for combining two different sources of data to achieve a seamless and geo-referenced mosaic, without 3D reconstruction or complex global registration. Experiments with real airborne video images show that the proposed algorithms are practical in important environmental applications. Zhigang Zhu received his B.E., M.E. and Ph.D. degrees, all in computer science from Tsinghua University, Beijing, in 1988, 1991 and 1997, respectively. He is currently an associate professor in the Department of Computer Science, the City College of the City University of New York. Previously, he was an associate professor at Tsinghua University, and a senior research fellow at the University of Massachusetts, Amherst. His research interests include 3D computer vision, HCI, virtual/augmented reality, video representation, and various applications in education, environment, robotics, surveillance and transportation. He has published over 90 technical papers in the related fields. He is a member of IEEE and ACM. Edward M. Riseman received his B.S. degree from Clarkson College of Technology in 1964 and his M.S. and Ph.D. degrees in electrical engineering from Cornell University in 1966 and 1969, respectively. He joined the Computer Science Department at UMass-Amherst as assistant professor in 1969, has been a professor since 1978, and served as chairman of the department from 1981 to 1985. Professor Riseman has conducted research in computer vision, artificial intelligence, learning, and pattern recognition, and has more than 200 publications. He has co-directed the Computer Vision Laboratory since its inception in 1975. Professor Riseman has been on the editorial boards of Computer Vision and Image Understanding (CVIU) from 1992 to 1997 and of the International Journal of Computer Vision (IJCV) from 1987 to the present. He is a senior member of IEEE, and a fellow of AAAI. Allen R. Hanson received his B.S. degree from Clarkson College of Technology in 1964 and his M.S. and Ph.D. degrees in electrical engineering from Cornell University in 1966 and 1969, respectively. He joined the Computer Science Department at UMass-Amherst as an associate professor in 1981, and has been a professor there since 1989. Professor Hanson has conducted research in computer vision, artificial intelligence, learning, and pattern recognition, and has more than 150 publications. He is co-director of the Computer Vision Laboratory at UMass-Amherst, and has been on the editorial boards of the following journals: Computer Vision, Graphics and Image Processing 1983–1990, Computer Vision, Graphics, and Image ProcessingImage Understanding 1991–1994, and Computer Vision and Image Understanding 1995–present. Howard Schultz received a M.S. degree in physics from UCLA in 1974 and a Ph.D. in physical oceanography from the University of Michigan in 1982. Currently, he is a senior research fellow with the Computer Science Department at the University of Massachusetts, Amherst. His research interests include quantitative methods for image understanding and remote sensing. The current focus of his research activities are on developing automatic techniques for generating complex, 3D models from sequences of images. This research has found application in a variety of programs including real-time terrain modeling and video aided navigation. He is a member of the IEEE, the American Geophysical Union, and the American Society of Photogrammetry and Remote Sensing.  相似文献   

18.
Multimedia presentations (e.g., lectures, digital libraries) normally include discrete media objects such as text and images along with continuous media objects such as video and audio. Objects composing a multimedia presentation need to be delivered based on the temporal relationships specified by the author(s). Hence, even discrete media objects (that do not normally have any real-time characteristics) have temporal constraints on their presentations. Composition of multimedia presentations may be light (without any accompanying video or large multimedia data) or heavy (accompanied by video for the entire presentation duration). The varying nature of the composition of multimedia presentations provides some flexibility for scheduling their retrieval. In this paper, we present a min-max skip round disk scheduling strategy that can admit multimedia presentations in a flexible manner depending on their composition. We also outline strategies for storage of multimedia presentations on an array of disks as well as on multi-zone recording disks.Emilda Sindhu received the B.Tech degree in Electrical & Electronics from University of Calicut, India, in 1995 and the M.S. degree in Computer Science in 2003 from National University of Singapore. This paper comprises part of her master thesis work. She is presently employed as Senior Research Officer at the A-star Institute of High Performance Computing (IHPC), Singapore. Her current research interests include distributed computing particulary Grid computing. She is involved in the development of tools and components for distributed computing applications.Lillykutty Jacob obtained her B.Sc (Engg.) degree in electronics and communication from the Kerala University, India, in 1983, M.Tech. degree in electrical engineering (communication) from the Indian Institute of Technology at Madras in 1985, and PhD degree in electrical communication engineering from the Indian Institute of Science, in 1993. She was with the department of computer science, Korea Advanced Institute of Science and Technology, S. Korea, during 1996–97, for post doctoral research, and with the department of Computer Science, National University of Singapore, during 1998–2003, as a visiting faculty. Since 1985 she has been with the National Institute of Technology at Calicut, India, where she is currently a professor. Her research interests include wireless networks, QoS issues, and performance analysis.Ovidiu Daescu received the B.S. in computer science and automation from the Technical Military Academy, Bucharest, Romania, in 1991, and the M.S. and Ph.D. degrees from the University of Notre Dame, in 1997 and 2000. He is currently an Assistant Professor in the Department of Computer Science, University of Texas at Dallas. His research interests are in algorithm design, computational geometry and geometric optimization.B. Prabhakaran is currently with the Department of Computer Science, University of Texas at Dallas. Dr. B. Prabhakaran has been working in the area of multimedia systems: multimedia databases, authoring & presentation, resource management, and scalable web-based multimedia presentation servers. He has published several research papers in prestigious conferences and journals in this area.Dr. Prabhakaran received the NSF CAREER Award FY 2003 for his proposal on Animation Databases. Dr. Prabhakaran has served as an Associate Chair of the ACM Multimedia2003 (November 2003, California), ACM MM 2000 (November 2000, Los Angeles), and ACM Multimedia99 conference (Florida, November 1999). He has served as guest-editor (special issue on Multimedia Authoring and Presentation) for ACM Multimedia Systems journal. He is also serving on the editorial board of Multimedia Tools and Applications journal, Kluwer Academic Publishers. He has also served as program committee member on several multimedia conferences and workshops. Dr. Prabhakaran has presented tutorials in several conferences on topics such as network resource management, adaptive multimedia presentations, and scalable multimedia servers.B. Prabhakaran has served as a visiting research faculty with the Department of Computer Science, University of Maryland, College Park. He also served as a faculty in the Department of Computer Science, National University of Singapore as well as in the Indian Institute of Technology, Madras, India.  相似文献   

19.
Recently, mining from data streams has become an important and challenging task for many real-world applications such as credit card fraud protection and sensor networking. One popular solution is to separate stream data into chunks, learn a base classifier from each chunk, and then integrate all base classifiers for effective classification. In this paper, we propose a new dynamic classifier selection (DCS) mechanism to integrate base classifiers for effective mining from data streams. The proposed algorithm dynamically selects a single “best” classifier to classify each test instance at run time. Our scheme uses statistical information from attribute values, and uses each attribute to partition the evaluation set into disjoint subsets, followed by a procedure that evaluates the classification accuracy of each base classifier on these subsets. Given a test instance, its attribute values determine the subsets that the similar instances in the evaluation set have constructed, and the classifier with the highest classification accuracy on those subsets is selected to classify the test instance. Experimental results and comparative studies demonstrate the efficiency and efficacy of our method. Such a DCS scheme appears to be promising in mining data streams with dramatic concept drifting or with a significant amount of noise, where the base classifiers are likely conflictive or have low confidence. A preliminary version of this paper was published in the Proceedings of the 4th IEEE International Conference on Data Mining, pp 305–312, Brighton, UK Xingquan Zhu received his Ph.D. degree in Computer Science from Fudan University, Shanghai, China, in 2001. He spent four months with Microsoft Research Asia, Beijing, China, where he was working on content-based image retrieval with relevance feedback. From 2001 to 2002, he was a Postdoctoral Associate in the Department of Computer Science, Purdue University, West Lafayette, IN. He is currently a Research Assistant Professor in the Department of Computer Science, University of Vermont, Burlington, VT. His research interests include Data mining, machine learning, data quality, multimedia computing, and information retrieval. Since 2000, Dr. Zhu has published extensively, including over 40 refereed papers in various journals and conference proceedings. Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, ICML, KDD, ICDM, and WWW, as well as 11 books and conference proceedings. Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE Computer Society), the founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP). He is the 2004 ACM SIGKDD Service Award winner. Ying Yang received her Ph.D. in Computer Science from Monash University, Australia in 2003. Following academic appointments at the University of Vermont, USA, she currently holds a Research Fellow at Monash University, Australia. Dr. Yang is recognized for contributions in the fields of machine learning and data mining. She has published many scientific papers and book chapters on adaptive learning, proactive mining, noise cleansing and discretization. Contact her at yyang@mail.csse.monash.edu.au.  相似文献   

20.
Due to recent rapid deployment of Internet Appliances and PostPC products, the importance of developing lightweight embedded operating system is being emphasized more. In this article, we like to present the details of design and implementation experience of low cost embedded system, Zikimi, for multimedia data processing. We use the skeleton of existing Linux operating system and develop a micro-kernel to perform a number of specific tasks efficiently and effectively. Internet Appliances and PostPC products usually have very limited amount of hardware resources to execute very specific tasks. We carefully analyze the system requirement of multimedia processing device. Weremove the unnecessary features, e.g. virtual memory, multitasking, a number of different file systems, and etc. The salient features of Zikimi micro kernel are (i) linear memory system and (ii) user level control of I/O device. The result of performance experiment shows that LMS (linear memory system) of Zikimi micro kernel achieves significant performance improvement on memory allocationagainst legacy virtual memory management system of Linux. By exploiting the computational capability of graphics processor and its local memory, we achieve 2.5 times increase in video processing speed. Supported by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Funded by Faculty Research Institute Program 2001, Sahmyook University, Korea. Sang-Yeob Lee received his B.S. and M.S degree from Hanyang University, seoul, Korea in 1995. He is currently working towards the Ph.D. degree in Devision of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. Since 1998, he has been on the faculty of Information Management System at Sahmyook university, Seoul, Korea. His research interests include robot vision systems, pattern recognition, Multimedia systems. He is a member of IEEE. Youjip Won received the B.S and M.S degree in Computer Science from the Department of Computer Science, Seoul National University, Seoul, Korea in 1990 and 1992, respectively and the Ph.D. in Computer Science from the University of Minnesota, Minneapolis in 1997. After finishing his Ph.D., He worked as Server Performance Analysts at Server Architecture Lab., Intel Corp. Since 1999, he has been on the board of faculty members in Division of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. His current research interests include Multimedia Systems, Internet Technology, Database and Performance Modeling and Analysis. He is a member of ACM and IEEE. Whoi-Yul Kim received his B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea in 1980. He received his M.S. from Pennsylvania State University, University Park, in 1983 and his Ph.D. from Purdue University, West Lafayette, in 1989, both in Electrical Engineering. From 1989 to 1994, he was with the Erick Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. Since 1994, he has been on the faculty of Electronic Engineering at Hanyang University, Seoul, Korea. He has been involved with research development of various range sensors and their use in robot vision systems. Recently, his work has focused on content-based image retrieval system. He is a member of IEEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号