共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrospective shading correction based on entropy minimization 总被引:3,自引:0,他引:3
Shading is a prominent phenomenon in microscopy, manifesting itself via spurious intensity variations not present in the original scene. The elimination of shading effects is frequently necessary for subsequent image processing tasks, especially if quantitative analysis is the final goal. While most of the shading effects may be minimized by setting up the image acquisition conditions carefully and capturing additional calibration images, object-dependent shading calls for retrospective correction. In this paper a novel method for retrospective shading correction is proposed. Firstly, the image formation process and the corresponding shading effects are described by a linear image formation model, which consists of an additive and a multiplicative parametric component. Secondly, shading correction is performed by the inverse of the image formation model, whose shading components are estimated retrospectively by minimizing the entropy of the acquired images. A number of tests, performed on artificial and real microscopical images, show that this approach is efficient for a variety of differently structured images and as such may have applications in and beyond the field of microscopical imaging. 相似文献
2.
The presence of systematic noise in images in high‐throughput microscopy experiments can significantly impact the accuracy of downstream results. Among the most common sources of systematic noise is non‐homogeneous illumination across the image field. This often adds an unacceptable level of noise, obscures true quantitative differences and precludes biological experiments that rely on accurate fluorescence intensity measurements. In this paper, we seek to quantify the improvement in the quality of high‐content screen readouts due to software‐based illumination correction. We present a straightforward illumination correction pipeline that has been used by our group across many experiments. We test the pipeline on real‐world high‐throughput image sets and evaluate the performance of the pipeline at two levels: (a) Z′‐factor to evaluate the effect of the image correction on a univariate readout, representative of a typical high‐content screen, and (b) classification accuracy on phenotypic signatures derived from the images, representative of an experiment involving more complex data mining. We find that applying the proposed post‐hoc correction method improves performance in both experiments, even when illumination correction has already been applied using software associated with the instrument. To facilitate the ready application and future development of illumination correction methods, we have made our complete test data sets as well as open‐source image analysis pipelines publicly available. This software‐based solution has the potential to improve outcomes for a wide‐variety of image‐based HTS experiments. 相似文献
3.
A thin fluorescent test layer, which is used in a practically mono-exponential bleaching regime, is employed to determine separately the excitation intensity and the fluorescence detection efficiency distributions in the field of view of a confocal fluorescence microscope. We demonstrate that once these distributions are known, it is possible to correct an image of a specimen for intensity variations which are caused by spatial nonuniformities of the illumination and the detection efficiency of the microscope. It is indicated that, provided a photophysically well-characterized fluorescent test layer is available, the method is potentially capable of quantifying the fluorescence intensities in an image of a specimen in terms of the fluorescence quantum yield, the absorption cross-section and the concentration of the fluorophore in the specimen. 相似文献
4.
A method is presented for the standardization of images acquired with fluorescence microscopy, based on the knowledge of spatial distributions proportional to the microscope's absolute excitation intensity and fluorescence detection efficiency distributions over the image field. These distributions are determined using a thin fluorescent test layer, employed under practically mono-exponential photobleaching conditions. It is demonstrated that these distributions can be used for (i) the quantitative evaluation of differences between both the excitation intensity and the fluorescence detection efficiency of different fluorescence microscopes and (ii) the standardization of images acquired with different microscopes, permitting the deduction of quantitative relationships between images obtained under different imaging conditions. 相似文献
5.
J. M. ZWIER† G. J. VAN ROOIJ J. W. HOFSTRAAT† & G. J. BRAKENHOFF 《Journal of microscopy》2004,216(1):15-24
A fluorescence image calibration method is presented based on the use of standardized uniformly fluorescing reference layers. It is demonstrated to be effective for the correction of non‐uniform imaging characteristics across the image (shading correction) as well as for relating fluorescence intensities between images taken with different microscopes or imaging conditions. The variation of the illumination intensity over the image can be determined on the basis of the uniform bleaching characteristics of the layers. This permits correction for the latter and makes bleach‐rate‐related imaging practical. The significant potential of these layers for calibration in quantitative fluorescence microscopy is illustrated with a series of applications. As the illumination and imaging properties of a microscope can be evaluated separately, the methods presented are also valuable for general microscope testing and characterization. 相似文献
6.
Because of the inherent imperfections of the image formation process, microscopical images are often corrupted by spurious intensity variations. This phenomenon, known as shading or intensity inhomogeneity, may have an adverse affect on automatic image processing, such as segmentation and registration. Shading correction methods may be prospective or retrospective. The former require an acquisition protocol tuned to shading correction, whereas the latter can be applied to any image, because they only use the information already present in an image. Nine retrospective shading correction methods were implemented, evaluated and compared on three sets of differently structured synthetic shaded and shading‐free images and on three sets of real microscopical images acquired by different acquisition set‐ups. The performance of a method was expressed quantitatively by the coefficient of joint variations between two different object classes. The results show that all methods, except the entropy minimization method, work well for certain images, but perform poorly for others. The entropy minimization method outperforms the other methods in terms of reduction of true intensity variations and preservation of intensity characteristics of shading‐free images. The strength of the entropy minimization method is especially apparent when applied to images containing large‐scale objects. 相似文献
7.
J.M. ZWIER‡ L. OOMEN† L. BROCKS† K. JALINK† & G.J. BRAKENHOFF 《Journal of microscopy》2008,231(1):59-69
The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging Property (SIP) charts ( Brakenhoff et al. , 2005 ). It is shown that the integrated intensity of a z -stack from a biological sample, imaged under identical conditions as the layer, can be calibrated in terms of fluorescence layer units of the calibration layer. The imaging after such calibration becomes, as a first approximation, independent of the microscope system and imaging conditions. This is demonstrated on axially integrated images of standard fluorescent beads and standard BPAE Fluorocells. Corrections on the microscope imaging conditions include shading effects, imaging with different magnifications and objectives, and using different microscope systems. It is also shown that with the present approach the actual underlying three-dimensional (3D) fluorescence data set itself can be corrected for variations in point spread function (PSF) imaging efficiency over the imaging data cube. Realizing such calibration between imaging conditions or systems requires basically only the 2D fluorescer molecule density of the reference layers and the section distances with which the layer data are collected. 相似文献
8.
Time‐lapse fluorescence microscopy is a valuable technology in cell biology, but it suffers from the inherent problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artefacts. This will lead to inaccurate estimates of single‐cell features such as average and total intensity. Numerous shading correction methods have been proposed to remove this effect. In order to compare the performance of different methods, many quantitative performance measures have been developed. However, there is little discussion about which performance measure should be generally applied for evaluation on real data, where the ground truth is absent. In this paper, the state‐of‐the‐art shading correction methods and performance evaluation methods are reviewed. We implement 10 popular shading correction methods on two artificial datasets and four real ones. In order to make an objective comparison between those methods, we employ a number of quantitative performance measures. Extensive validation demonstrates that the coefficient of joint variation (CJV) is the most applicable measure in time‐lapse fluorescence images. Based on this measure, we have proposed a novel shading correction method that performs better compared to well‐established methods for a range of real data tested. 相似文献
9.
Light widefield microscopes and digital imaging are the basis for most of the analyses performed in every biological laboratory. In particular, the microscope's user is typically interested in acquiring high‐detailed images for analysing observed cells and tissues, meanwhile being representative of a wide area to have reliable statistics. The microscopist has to choose between higher magnification factor and extension of the observed area, due to the finite size of the camera's field of view. To overcome the need of arrangement, mosaicing techniques have been developed in the past decades for increasing the camera's field of view by stitching together more images. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Or alternatively, the methods are conceived just to provide visually pleasant mosaics not suitable for quantitative analyses. This work presents a tool for building mosaics of images acquired with nonautomated light microscopes. The method proposed is based on visual information only and the mosaics are built by incrementally stitching couples of images, making the approach available also for online applications. Seams in the stitching regions as well as tonal inhomogeneities are corrected by compensating the vignetting effect. In the experiments performed, we tested different registration approaches, confirming that the translation model is not always the best, despite the fact that the motion of the sample holder of the microscope is apparently translational and typically considered as such. The method's implementation is freely distributed as an open source tool called MicroMos. Its usability makes building mosaics of microscope images at subpixel accuracy easier. Furthermore, optional parameters for building mosaics according to different strategies make MicroMos an easy and reliable tool to compare different registration approaches, warping models and tonal corrections. 相似文献
10.
通过拼接角膜神经图像可以减小显微图像视场小的影响。由于显微图像存在渐晕效果,拼接图像会在拼接处产生伪影,影响医生诊断。为解决拼接图像的渐晕伪影问题,提出了一种通过非线性多项式函数建模进行图像渐晕校正的方法。首先,对单张角膜神经图像建立渐晕模型,设置符合渐晕物理性质的约束条件,利用L-M优化算法对渐晕模型参数进行迭代优化。在每次迭代优化过程中,计算对数信息熵,对当前渐晕模型的校正效果进行判断,防止图像过度校正。迭代优化结束后,将渐晕模型反向补偿原图像,完成渐晕校正处理。通过对比校正前后的拼接图像,校正后图像在拼接处无明显的渐晕伪影。实验测试5组不同患者的图像,校正后图像MSE、PSNR、SSIM评估指标平均值分别达到0.004 2、72.225 1 dB、0.960 0,具有最佳的校正效果。本文算法的校正效果明显优于其他同类算法的校正效果。该方法能够有效地对角膜图像渐晕效果进行校正,无须提前设置固定的相机和环境亮度参数。校正后图像拼接效果良好,可获得更加准确、清晰、视野范围大的角膜神经拼接图像。 相似文献
11.
A major limitation to the use of confocal microscopes to image thick biological tissue lies in the dramatic reduction in both signal level and resolution when focusing deep into a refractive-index-mismatched specimen. This limitation may be overcome by measuring the wavefront aberration and pre-shaping the input beam so as to cancel the effects of aberration. We consider the images of planar and point objects in brightfield, single-photon fluorescence and two-photon fluorescence imaging. In all cases, the specimens are imaged using an oil-immersion objective through various thicknesses of water. The question of finite-sized pinhole is addressed and it is found, in general, that it is sufficient to correct only the first two or three orders of spherical aberration to restore adequate image signal level and optical resolution, at imaging depths of up to 50-100 wavelengths. 相似文献
12.
S. K. CHOW H. HAKOZAKI D. L. PRICE N. A. B. MACLEAN T. J. DEERINCK J. C. BOUWER M. E. MARTONE S. T. PELTIER & M. H. ELLISMAN 《Journal of microscopy》2006,222(2):76-84
An automatic mosaic acquisition and processing system for a multiphoton microscope is described for imaging large expanses of biological specimens at or near the resolution limit of light microscopy. In a mosaic, a larger image is created from a series of smaller images individually acquired systematically across a specimen. Mosaics allow wide‐field views of biological specimens to be acquired without sacrificing resolution, providing detailed views of biological specimens within context. The system is composed of a fast‐scanning, multiphoton, confocal microscope fitted with a motorized, high‐precision stage and custom‐developed software programs for automatic image acquisition, image normalization, image alignment and stitching. Our current capabilities allow us to acquire data sets comprised of thousands to tens of thousands of individual images per mosaic. The large number of individual images involved in creating a single mosaic necessitated software development to automate both the mosaic acquisition and processing steps. In this report, we describe the methods and challenges involved in the routine creation of very large scale mosaics from brain tissue labelled with multiple fluorescent probes. 相似文献
13.
We discuss here the principles of a novel optical method in which the scanning of a laser spot around a fluorescent object is used to determine its shape, orientation, and fluorophore distribution. The scanning pattern is adapted to the shape of the object according to a feedback principle based on intensity modulation measurements. The modulation of the intensity with respect to the angular coordinate is used to keep the orbit centered on the object. The modulation induced by rapid oscillations of the orbit radius is used to measure the local distance from the surface with nanometer precision. We provide a model to describe the fundamental relationship between modulation and distance and discuss the range of validity of several approximate expressions. According to this model, the distance can be measured with a precision dependent on the steepness of the point spread function and the total number of detected photons. To test our findings, we performed experiments with one or two channels on fluorescent spheres of known size and characterized the modulation function of our microscope setup. We conclude that the method can be used to measure distances in the range 10–200 nm between two surfaces labeled with two different probes. Microsc. Res. Tech. 75:1253–1264, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
14.
G. J. BRAKENHOFF† G. W. H. WURPEL K. JALINK† L. OOMEN† L. BROCKS† & J. M. ZWIER 《Journal of microscopy》2005,219(3):122-132
Thin, uniformly fluorescing reference layers can be used to characterize the imaging conditions in confocal, or more general, sectioning microscopy. Through-focus datasets of such layers obtained by standard microscope routines provide the basis for the approach. A set of parameters derived from these datasets is developed for defining a number of relevant sectioned imaging properties. The main characteristics of a particular imaging situation can then be summarized in a Sectioned Imaging Property-chart or SIPchart. We propose the use of such charts for the characterization of imaging properties in confocal and multiphoton microscopy. As such, they can be the basis for comparison of sectioned imaging condition characteristics, quality control, maintenance or reproduction of sectioned imaging conditions and other applications. Such charts could prove useful in documenting the more relevant properties of the instrumentation used in microscopy studies. The method carries the potential to provide the basis for a general characterization of sectioned imaging conditions as the layers employed can be characterized and fabricated to standard specifications. A limited number of such thin, uniformly fluorescing layers is available from our group for this purpose. Extension of the method to multiphoton microscopy is discussed. 相似文献
15.
16.
17.
Total internal reflection fluorescence (TIRF) microscopy is finding increasing application for selectively detecting molecules at or near a glass–water surface. As with all fluorescence methods, the efficiency of excitation of a fluorophore is potentially sensitive to the polarization state of the source. In TIRF, s‐polarized excitation produces an evanescent field that is perpendicular to the incident plane (y direction), whereas p‐polarized light generates a more complex pattern but one dominated by a field that is vertical to the surface (z direction). Thus, fluorophores whose absorption dipoles are fixed in the x direction are not favourably aligned for excitation. Here we describe a beam‐splitting prism arrangement that allows excitation by two orthogonal beams, thus giving isotropic excitation in the x–y plane with s‐polarized light. With linearly polarized light at the magic angle, near isotropic excitation in three dimensions should be achieved. This prism design should find application in polarized fluorescence microscopy to investigate the rotational motions of macromolecules or to minimize flickering of fluorescence emission arising from molecular rotations in single molecule studies. 相似文献
18.
Fluorescent signal intensities from confocal laser scanning microscopes (CLSM) suffer from several distortions inherent to the method. Namely, layers which lie deeper within the specimen are relatively dark due to absorption and scattering of both excitation and fluorescent light, photobleaching and/or other factors. Because of these effects, a quantitative analysis of images is not always possible without correction. Under certain assumptions, the decay of intensities can be estimated and used for a partial depth intensity correction. In this paper we propose an original robust incremental method for compensating the attenuation of intensity signals. Most previous correction methods are more or less empirical and based on fitting a decreasing parametric function to the section mean intensity curve computed by summing all pixel values in each section. The fitted curve is then used for the calculation of correction factors for each section and a new compensated sections series is computed. However, these methods do not perfectly correct the images. Hence, the algorithm we propose for the automatic correction of intensities relies on robust estimation, which automatically ignores pixels where measurements deviate from the decay model. It is based on techniques adopted from the computer vision literature for image motion estimation. The resulting algorithm is used to correct volumes acquired in CLSM. An implementation of such a restoration filter is discussed and examples of successful restorations are given. 相似文献
19.
Artefacts in restored images due to intensity loss in three-dimensional fluorescence microscopy 总被引:1,自引:1,他引:1
Computational algorithms for three-dimensional deconvolution have proven successful in reducing blurring and improving the resolution of fluorescence microscopic images. However, discrepancies between the imaging conditions and the models on which such deconvolution algorithms are based may lead to artefacts and/or distortions in the images restored by application of the algorithms. In this paper, artefacts associated with a decrease of fluorescence intensity with time or slice in three-dimensional wide-field images are demonstrated using simulated images. Loss of intensity, whether due to photobleaching or other factors, leads to artefacts in the form of bands or stripes in the restored images. An empirical method for correcting the intensity losses in wide-field images has been implemented and used to correct biological images. This method is based on fitting a decreasing function to the slice intensity curve computed by summing all pixel values in each slice. The fitted curve is then used for the calculation of correction factors for each slice. 相似文献
20.
Agnes Koerfer;Francesco Reina;Christian Eggeling; 《Journal of microscopy》2024,296(2):150-153
Molecular mobility is an important measure in biological functionality, as molecules have to diffuse to meet and interact and perform actions. Measurement of mobility requires specific tools such as fluorescence correlation spectroscopy (FCS). Especially, combination with superresolution stimulated emission depletion microscopy (STED-FCS), whether in a point- or beam-scanning mode, has proven valuable for determination of anomalous diffusion. STED-FCS however relies on an accurate calibration of the effective observation spot formed for different laser powers of the additional STED laser. This poster article highlights the need for calibration measurements and outlines that rather simple procedures involving acetone cover-glass surface cleaning only, instead of piranha cover-glass surface cleaning, and point instead of more complex scanning STED-FCS are sufficient for calibration. 相似文献