首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycling of waste water by ion exchange was studied on a bench scale. Secondary municipal effluent, which had undergone lime flocculation, served as a feed for the ion-exchange system. Partial desalination was achieved by allowing part of the feed to bypass the strong acid cation exchanger. The salt concentration was decreased from 15 meq/l (750 ppm as CaCO3) to 7–10 meq/l (350–500 ppm as CaCO3) and the organic matter, from 70–100 mg/l COD (chemical oxygen demand) to about 25 mg/l. The leakage of organic matter in the partial desalination mode was somewhat higher than that found in complete desalination. The resins were found to be highly resistant to an attack of organic matter over a period of one year. Three possible resin arrangements were investigated, and a cost analysis for one of them is presented. Since inexpensive chemicals, such as H2SO4, and Ca(OH)2, can be used for regeneration the system provides an economical method for recycling waste water for industry and agriculture.  相似文献   

2.
Biodegradable dissolved organic material and ammonia present problems for conventional water treatment processes and may contribute to biological instability in the treated water. One solution may be to use a biological process upstream of the regular water treatment process. Biofiltration may be cost‐effective in removing ammonia and the precursors of trihalomethanes but the characteristics of the biotreated effluent may affect to the subsequent coagulation process. A continuous flow biological filter packed with reticulated polyurethane foam markedly altered the particle size distribution and the charge density of the mixed liquor, shifting the granulometric distribution toward larger sizes. The mean and median diameter of the particles increased from 9.7 and 5.9 µm to 97.6 and 37.1 µm, respectively. The average charge density of the biofilter effluent (7.6 meq dm?3) was much lower than that of the raw water (12.7 meq dm?3). The optimum coagulant dosage for the subsequent coagulation was reduced substantially from 10 mg dm?3 to 1 mg dm?3 as Al due to the lowered charge density of the mixed liquor and the enhanced cation bridging of the extracellular polymers on the bioparticle surface. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
The capability of biological nutrient removal from wastewater of a novel laboratory‐scale twin fluidized‐bed bioreactor (TFBBR) was studied. The work showed approximately 96 % organic matter, 84 % nitrogen, and 12 % phosphorus removal efficiencies in the first three phases of the study at influent synthetic municipal wastewater (SMW) flow rates of 150, 190, and 240 L/d, with corresponding organic loading rates of 1.3, 1.7, and 2.3 kg COD m–3 d–1 and nitrogen loading rates of 0.14, 0.18 and 0.25 kg N m–3 d–1. The TFBBR effluent was characterized by <1.0 mg NH4‐N/L, <4.3 mg NO3‐N/L, <6 mg TN/L, <6 mg SBOD/L, and 6–10 mg VSS/L. For the three phases, biomass yields of 0.06, 0.066, and 0.071 g VSS/g COD were observed, respectively, which was a significant further reduction in yield compared to the liquid‐solid circulating fluidized‐bed bioreactor technology developed and patented by this research group, of 0.12–0.16 g VSS/g COD. The very low yield was due to a longer solid retention time of 72–108 d.  相似文献   

4.
Fish-meal processing plants use large volumes of seawater to unload the fish from ships. Water to fish ratios range from 5 to 10 (m3 tonne−1), producing an effluent high in chemical oxygen demand (COD) load, which is discharged to the sea. Alternative treatments were studied from economic and environmental aspects. The selected treatment involved two sequential steps: recycling of water during unloading and salvaging of reusable organic matter by chemical coagulation of soluble proteins with FeCl3 followed by centrifugal separation. The recovered sludge was incorporated into the fish-meal process. Technical feasibility and cost implementation at industrial-scale were assessed. Results obtained at one plant demonstrated overall COD removal efficiencies of 93% for the clarified effluent (91% for proteins and 93% for fats and oil). Incorporation of the precipitated organic matter into the process increased productivity by approximately 7%.  相似文献   

5.
F. El-Gohary 《Desalination》2009,249(3):1159-149
This paper summarizes the results of disperse and reactive dyes wastewater treatment processes aiming at the destruction of the wastewater's color and chemical oxygen demand (COD) reduction by means of coagulation/flocculation (CF) followed by sequential batch reactor (SBR) process. The color removal efficiency of magnesium chloride aided with lime [MgCl2/CaO] was compared with that of alum [Al2 (SO4)3] and lime [Cao]. The experimental results showed that treatment with lime alone (600 mg/l) at pH value of 11.7 proved to be very effective. Color removal reached 100% and COD was reduced by 50%. Treatment with magnesium chloride aided with lime at pH value of 11 removed color completely and reduced the COD value by 40%. However, lime or lime in combination with magnesium chloride produced high amounts of sludge (1.84 kg/m3 for lime & 1.71 kg/m3 for MgCl2 aided with lime). Also, the pH of the treated effluent was around 11 and needs correction prior to discharge into sewer network. The use of 200 mg/l alum without pH adjustment removed 78.9% of the color. To improve the effectiveness of alum, the cationic polymer namely cytec was used as a coagulant aid. This significantly increased color removal from 78.9 up to 94% and COD reduction was around 44%. Moreover, sludge production was only 0.36 kg/m3. Chemically pre-treated effluent was subjected to SBR process at an HRT of 5.0 h. Residual CODtotal, total biochemical oxygen demand (BOD5 total) and total suspended solids (TSS) in the final effluent were 78 ± 7.7; 28 ± 4.2 and 17 ± 4.2 mg/l, corresponding to the removal efficiency of 68.2; 76.3 and 61.4% respectively. Furthermore, almost complete removal of CODparticulate and BOD5particulate has been achieved.  相似文献   

6.
The treatment of effluent from a paper/board factory that produced 280 tons of cardboard and consumed 1200 m3 of water per day was carried out. Wastewater analysis showed that the mill effluent contained 3000 mg dm?3 suspended solids, 1400 mg dm?3 COD (chemical oxygen demand) and 500 mg dm?3 BOD (biochemical oxygen demand). An internal treatment cycle is suggested that involves recirculation of paper‐machine wastewater (white‐water) and may be accomplished by installing a flotation saveall (fiber recovery) unit. This arrangement reduced fresh water use by about 90%, reduced fiber loss by 80–90%, and increased board production by 13%. An external treatment process for the effluent was assessed by conducting laboratory coagulation tests (alum, ferric chloride, ferrous sulfate, and polyelectrolyte) on the whole mill effluent. Oxidation of the mill effluent using calcium hypochlorite before discharging the effluent to a lagoon offers the benefits of killing the harmful bacteria and reducing the pollution load. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
8.
The performance of the hydrolyzation film bed and biological aerated filter (HFB–BAF) combined system in pilot scale (with a daily treatment quantity of 600–1300 m3 d?1), operated for 234 days, for low‐strength domestic sewage was assessed using different amounts of aeration, reflux ratios and hydraulic loading rates (HLR). In steady state it was found that the average removal efficiency of chemical oxygen demand (COD) and biological oxygen demand at 5 days (BOD5) were 82.0% and 82.2% and the average effluent concentrations were 15.8 mg L?1 and 9.4 mg L?1 respectively as the HFB was running at an HLR of 1.25–1.77 m3 m?2 h?1 and the BAF was running at an HLR of 1.56–2.21 m3 m?2 h?1. In general, the removal efficiency of total nitrogen (TN) fluctuated with the HLR, gas–water ratio and reflux ratio, so the ratio of gas to water should be controlled from 2:1 to 3:1 and the reflux ratio should be as high as possible. The effluent concentration of TN was 10.4 mg L?1 and the TN removal averaged 34.3% when the gas–water ratio was greater than 3:1 and the reflux ratio was 0.5. The effluent concentration and removal efficiency of NH4+‐N averaged respectively 2.3 mg L?1 and 78.5%. The overall reduction of total phosphorus (TP) was 30% and the average effluent concentration was 0.95 mg L?1. The removal efficiency of linear alkylbenzene sulfonates (LAS) reached 83.8% and the average effluent concentration was almost 0.9 mg L?1. The effluent concentration and removal efficiency of polychlorinated biphenyls (PCBs) were 0.0654 µ g L?1 and 37.05% respectively when the influent concentration was 0.1039 µ g L?1. The excess sludge containing water (volume 15 m3) was discharged once every 3 months. The power consumption of aeration was 0.06–0.09 kWh of sewage treated. The results show that the HFB–BAF combined technology is suitable for the treatment of low‐concentration municipal sewage in south China. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
《分离科学与技术》2012,47(12):1915-1921
A novel method for the clarification of activated sludge, using sludge blanket filtration, was proposed. The process was tested continuously with activated sludge over 250 days. The proposed process is based on DAF separation, where the mixed liquor is distributed to the surface of the tank, and the clarified effluent is partially recycled with compressed air to the bottom. As a result, a floating blanket of sludge is formed which provides efficient separation of the mixed liquor suspended solids. Various factors, including the extent of sludge bulking, surface loading rate, and the depth of sludge blanket, were evaluated for their effects on the effluent water quality. A pilot-scale study demonstrated that separation by downflow Sludge Blanket Clarification (dSBC) showed better performance than other conventional separation technologies using micro-bubbles, such as DAF. The average effluent solids concentration from dSBC was about 3.0 mg/l, even with a relatively large amount of bulking sludge with a total surface loading of 60 m3/m2/d and air/solids ratio (A/S) of 0.011. This result has not been achievable with either gravitational sedimentation or DAF, even when the total surface loading rate was reduced to 20 m3/m2/d, one third of the value applied for dSBC. Based on these results, the dSBC process may provide a more efficient option for achieving both higher and more stable water quality in an activated sludge system.  相似文献   

10.
《分离科学与技术》2012,47(16):2491-2511
ABSTRACT

The feasibility of utilizing the phenomenon of dynamic membrane formation with crossflow microfiltration in treating domestic wastewater was investigated. The primary membrane, used throughout the investigation, was made of woven polyester. Different chemical species, such as CaCO3, FeCl3, and NaAIO2, were used in forming dynamic membranes on top of the primary membrane. Secondary effluent from a domestic activated sludge wastewater treatment plant was treated. A calcium carbonate dynamic membrane produced a stabilized permeate flux of 90 L/m2·h, with a permeate turbidity of 0.21 Nephelometric Turbidity Unit (NTU), at optimum conditions. Ferric chloride produced optimum results when it was mixed with tap water. A permeate flux and turbidity of 70 L/m2-h and 0.16 NTU, respectively, were obtained. Sodium aluminate produced a stabilized permeate flux of 77 L/m2·h when it was mixed with tap water during the formation of the dynamic membrane. The permeate turbidity was 0.16 NTU. The fouling mechanism of the three dynamic membranes was investigated, and empirical models were produced.  相似文献   

11.
A new membrane‐assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N‐NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N‐NH4+ m?3 d?1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m?3 d?1. Also, the concentration of ammonia in the effluent was low, 1 mg N‐NH4+ dm?3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow‐growing nitrifiers took place preferentially in the biofilm and the fast‐growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g?1 protein d?1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g?1 VSS d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
High surface area CaCO3 was produced through the reaction between CO2 and an aqueous suspension of Ca(OH)2 with the addition of an additive, sodium polyacrylate. The surface area of CaCO3 prepared was affected markedly by the amount of additive and the solution pH when adding the additive. The CaCO3 with the highest surface area (87.7 ± 1.3 m2/g) was obtained under the conditions that the initial Ca(OH)2 concentration was 2.4 wt.%, the amount of sodium polyacrylate added was 0.2 wt.%, and the solution pH at which the additive was added was in the range of 11.4-11.1. The high surface area CaCO3 also had a high pore volume. The CaCO3 was highly reactive toward SO2, and a conversion of 0.95 was achieved when it was sulfated at 950 °C and 4000 ppm SO2 in air for 1 min. Prior calcination reduced the reactivity of this high surface area CaCO3.  相似文献   

13.
The treatment of a refinery wastewater by Advanced Oxidation Processes (AOP) coupled with Biological Activated Carbon (BAC) was investigated aiming to generate water for reuse. O3/UV and H2O2/UV processes were employed to oxidize the organic matter and the BAC process to remove residual organic matter from the AOP effluent. AOP promoted oxidation of recalcitrant organic matter as observed by moderate drops on the treated wastewater absorbance (31–79%) and TOC values (10–18%). BAC filters showed to be effective, reaching average efficiencies of 65% in a sufficiently long period of operation (84 days), while GAC filters were saturated after 28 days. Effluent TOC values in the range of 4 to 8.5 mg/L were achieved by the combined treatment (H2O2/UV + BAC), allowing water reuse.  相似文献   

14.
Poly(vinylidene fluoride) (PVDF)–CaCO3 hybrid hollow fiber membranes with a cellular structure and prominent permeability were fabricated via the thermally induced phase separation method for membrane distillation. CaCO3 nanoparticles were introduced to the casting solution to improve the properties of the membranes. The effect of CaCO3 dosage on the morphology was investigated. The prepared membranes were characterized by differential scanning calorimetry, SEM, and atomic force microscopy. The results showed that liquid–liquid phase separation preceded solid–liquid phase separation during the spinning process. Low dosages of CaCO3 had a strong influence on the crystallization of PVDF molecules. The contact angle of the membrane increased with the addition of CaCO3 nanoparticles. The maximum dead end pure water flux was as high as 1295.5 L/(m2 h). The direct‐contact membrane distillation flux of the optimized PVDF/CaCO3 hybrid membrane achieved 63.98 kg/(m2 h) at the feed temperature of 90 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43372.  相似文献   

15.
A coagulation–microfiltration (MF) system was studied to treat the discharged membrane backwash water (MBW) to meet the drinking water quality requirements. The values of dissolved organic carbon (DOC) and trihalomethanes formation potential (THMFP) in MBW were higher than those in Luan River water (LRW, the raw water for a pilot-scale membrane plant, which produced MBW used in this study), and organic matter enriched in MBW distributed mainly in molecular weight (MW) > 10k Da. When 15 mg FeCl3/L and 15 mg/L powdered activated carbon (PAC) were added into the system, the average concentration of DOC was reduced from 5.731 mg/L in MBW to 3.377 mg/L in the treated water, and the average UV254 was reduced from 0.047 to 0.030 cm−1. The removal of organic matter was main in the range of MW > 30k Da. Efficient organic removal by the hybrid coagulation–MF system resulted in significant reduction of THMFP in the treated water. Concentrations of trihalomethanes, turbidity, bacteria and coliforms in the treated water were below the limit value of the drinking water standards. The results show that the treated water from MBW is with satisfactory organic and microbiological quality.  相似文献   

16.
This work was carried out to evaluate the effect of soil chemical properties, Zn carrier and time elapsed after fertilizer application on the diffusion and extractability of Zn. A soil block technique was used to study zinc diffusion and DTPA extractability from ZnEDTA and ZnSO4 fertilizers in three soils that varied in texture, CaCO3 content, organic matter content, and pH using Zn65 tracer. ZnEDTA diffused readily in all soils, moving 20–25 mm from the fertilizer layer after three days. The rate of Zn diffusion and the extractability of Zn, however, varied among the soils and were lowest in Baha soil with the highest clay content, organic matter, and CEC despite its lower pH. The high pH and CaCO3 content in Dirab soil did not restrict the diffusion or reduce the extractability of ZnEDTA in this soil. On the other hand, the diffusion of Zn from ZnSO4 fertilizer was largely restricted in all soils and was confined to 5 mm from the fertilizer layer after 13 d. The extractability of ZnSO4 fertilizer was largely affected by soil pH and CaCO3 content and was lowest in Dirab calcareous soil. Organic matter amendment at 5% (as alfalfa) considerably reduced the diffusion and the extractability of ZnSO4 in both Dirab calcareous and Bakyria noncalcareous soils. The application of 1% (w/w) elemental S reduced soil pH and increased Zn diffusion from ZnSO4 fertilizer in Bakyria soil but had slight effect on Dirab calcareous soil.  相似文献   

17.
Hydrophilic ion-exchange membranes based on sulfonated polyethylene hollow fibers were manufactured, and their suitability for a water pervaporation process was studied for possible application in water desalination systems. The effects of the following parameters on the average water flux were determined: membrane properties (diameter (0.4–1.8 mm) and wall thickness (0.05–0.18 mm)); charge density (0.6–1.2 meq g−1); and operating conditions (brine inlet temperature (30–68°C), air sweep velocity (0–6 m s−1), and salt concentration in the feed brine (0–3 M)). A water flux of 0.8–3.3 kg m−2 h−1 was obtained using this type of hollow fiber with an inlet brine temperature of 25–65°C. It was found that, for our application, the optimal specifications for the ion-exchange hollow fibers were an outside diameter of 1.2 mm, a wall thickness of 0.1 mm, and an ion-charge density of about 1.0 meq g−1. This information is required as basic data for the design of a prototype water desalination system based on a pervaporation system that uses this type of ion-exchange hollow fiber membrane.  相似文献   

18.
Nitrate removal with reverse osmosis in a rural area in South Africa   总被引:2,自引:0,他引:2  
The nitrate-nitrogen concentration (>6 mg/l) and the salinity (>1000 mg/l TDS) of many borehole waters in rural areas in South Africa are too high for human consumption. Therefore, an urgent need for water denitrification and water desalination exists in these areas. Reverse osmosis (RO), electrodialysis (ED), ion-exchange (IX) and certain biological technologies can be very effectively applied for water denitrification. Each of these technologies, however, has its own advantages and disadvantages. Reverse osmosis technology, however, has been selected for this study because the technology is well known in South Africa and because it can be very effectively applied for water desalination. The objectives of this study were: (a) to transfer RO technology through process demonstration performance for water denitrification and water desalination to people living in rural areas; (b) to build capacity regarding the operation and maintenance of an RO application in a rural area; (c) to produce a preliminary operational and maintenance manual for the operation of an RO unit in a rural environment; (d) to train local operators to operate and maintain an RO plant in a rural environment; (e) to evaluate stock watering as brine disposal option; and (f) to determine the preliminary economics ofthe process. The following conclusions were drawn. It was demonstratedthatthe RO process could be very effectively applied for water denitrification and water desalination in a rural area. Nitrate-nitrogen was reduced from 42.5 mg/l in the RO feed to only 0.9 mg/l in the RO product water. The TDS of the RO feed was reduced from 1292 mg/l to 24 mg/l in the RO permeate. Therefore, an excellent quality water could be produced for potable purposes. The RO brine at approximately 50% water recovery should be suitable for stock watering if the conditions for stock watering are met in terms of nitrate-nitrogen concentration, TDS and other constituent concentrations. The capital cost for an approximately 50 m3/d output RO plant is approximately US $29,900. Preliminary cost estimates have shown that the operational cost for water denitrification is approximately US $0.50/m3. This cost, however, should be significantly reduced by optimisation of the chemical dosing and by blending borehole water with RO product water.  相似文献   

19.
通过考察有机物生物降解和氨氮生物硝化过程中活性污泥电子传递体系(ETS)活性的变化规律,研究了ETS活性表征污泥生物活性的可行性,结合米门公式分析了有机物生物降解和硝化反应过程生物活性动力学。试验结果表明,活性污泥的ETS活性可以有效地揭示出有机物生物降解和氨氮生物硝化反应的进程,同时对系统受到的有机物和氨氮冲击负荷及硝化过程中碱度的变化有着灵敏的反映,这说明用ETS活性表征污泥的生物活性是可行的;有机物生物降解过程生物活性米氏常数KsT=368.9 mg·L-1,UmT=90.9 mg TF·(g TSS·h)-1,KsI=88.42 mg·L-1,UmI=277.8 mg INTF·(g TSS·h)-1;氨氮硝化过程生物活性米氏常数KsT=16.89 mg·L-1,UmT=34.6 mg TF·(g TSS·h)-1, KsI=6.0 mg·L-1,UmI=196.08 mg INTF·(g TSS·h)-1;生物活性动力学分析进一步验证了进行有机物生物降解的异养菌生长速率高于进行硝化反应的自养型硝化菌。  相似文献   

20.
The performance of a submerged membrane bioreactor (sMBR) for municipal wastewater reclamation and re-use was compared with that of a current classic activated sludge process (CASP). The average chemical oxygen demand (COD) of CASP effluent was 75 mg/l, while the average COD of sMBR filtrate was 15 mg/l. In general, COD removal was above 98%. However, the best results were obtained at a sludge rentention time (SRT) of 50 days. The total phosphorus (TP) content of the filtrate decreased to a level <1 mg/l under aerobic conditions in which aeration occurred continuously. It was shown that the filtrate TP and orthoposphate (Orto-P) concentrations increased dramatically during the periods of intermittent aeration because phosphorus is released under anoxic conditions. In the CASP effluent, the average TP and Orto-P were 7.9 mg/l and 7.1 mg/l, respectively. The filtrate was free of suspended solids (SS) and total coliform bacteria. The effluent SS in the CASP was 40 mg/l. The turbidity removal in the sMBR reached almost 99%, i.e. generally less than 1 NTU, while the average turbidity of the CASP effluent was almost 15 NTU. The removal of ammonium nitrogen (NH4+-N) in the sMBR was almost 99.8%. In addition, the nitrate concentration in the filtrate decreased to 2.4 mg/l under both aerobic & anoxic conditions. It was shown that both nitrification and denitrification could be successfully reduced through intermittent aeration. Average total Kjeldehl nitrogen (TKN) and NH4+-N in the CASP effluent were 30.2 mg/l and 20 mg/l, respectively, i.e. the nitrification efficiency was 42.9%, and the denitrification value was not available. When these results are compared with those in the CASP, it indicated that the sMBR could be successfully used for reclamation and re-use of municipal wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号