首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Second‐harmonic generation (SHG) microscopy has gained popularity because of its ability to perform submicron, label‐free imaging of noncentrosymmetric biological structures, such as fibrillar collagen in the extracellular matrix environment of various organs with high contrast and specificity. Because SHG is a two‐photon coherent scattering process, it is difficult to define a point spread function (PSF) for this modality. Hence, compared to incoherent two‐photon processes like two‐photon fluorescence, it is challenging to apply the various PSF‐engineering methods to improve the spatial resolution to be close to the diffraction limit. Using a synthetic PSF and application of an advanced maximum likelihood estimation (AdvMLE) deconvolution algorithm, we demonstrate restoration of the spatial resolution in SHG images to that closer to the theoretical diffraction limit. The AdvMLE algorithm adaptively and iteratively develops a PSF for the supplied image and succeeds in improving the signal to noise ratio (SNR) for images where the SHG signals are derived from various sources such as collagen in tendon and myosin in heart sarcomere. Approximately 3.5 times improvement in SNR is observed for tissue images at depths of up to ~480 nm, which helps in revealing the underlying helical structures in collagen fibres with an ~26% improvement in the amplitude contrast in a fibre pitch. Our approach could be adapted to noisy and low resolution modalities such as micro‐nano CT and MRI, impacting precision of diagnosis and treatment of human diseases.  相似文献   

2.
Surface-enhanced second harmonic generation from individual topographical defects of an otherwise flat gold film and from metal-coated diffraction gratings was measured using a near-field optical microscope. Experimentally measured second harmonic field distributions were compared with theoretical calculations.  相似文献   

3.
In this study, second‐harmonic imaging microscopy was used to monitor precancerous colorectal lesions at different stages. It was found that the morphology of glands and lamina propria in mucosa changes with the progression of colorectal diseases from normal to low‐grade intraepithelial neoplasia to high‐grade intraepithelial neoplasia and this microscopy has the ability of direct visualization of these warning symptoms. Furthermore, two morphologic variables were quantified to determine the changes of glands and collagen in lamina propria during the development of colorectal intraepithelial neoplasia. These results suggest that second‐harmonic imaging microscopy has the potential in label‐freely and effectively distinguishing between normal and precancerous colorectal tissues, and will be helpful for early diagnosis and treatment of colorectal diseases.  相似文献   

4.
Zheng L  Zhuo S  Chen G  Zhu X  Jiang X  Yan J  Chen J  Xie S 《Scanning》2011,33(4):208-210
Early detection of fibroadenoma (FA) is critical for preventing subsequent breast cancer. In this work, we show that label-free second harmonic generation (SHG) imaging is feasible and effective in quantitatively differentiating the fibroadenomal tissue from normal breast tissue. With the advent of the clinical portability of miniature SHG microscopy, we believe that the technique has great potential in offering a noninvasive in vivo imaging tool for early detection of FA and monitoring the treatment responses of FA in clinics.  相似文献   

5.
Huang Z  Zhuo S  Chen J  Chen R  Jiang X 《Scanning》2008,30(6):452-456
The fresh adipose tissue was investigated by the use of multiphoton microscopy (MPM) based on two-photon excited fluorescence and second-harmonic generation (SHG). Microstructure of collagen and adipose cells in the adipose tissue is clearly imaged at a subcellular level with the excitation light wavelengths of 850 and 730 nm, respectively. The emission spectrum of collagen SHG signal and NADH and FAD fluorescence signal can also be obtained, which can be used to quantify the content of collagen and adipose cells and reflect the degree of pathological changes when comparing normal tissue with abnormal adipose tissue in the same condition. The results indicate that MPM has the potential to be applied to investigate the adipose tissue and can be used in the research field of lipid and connective tissues.  相似文献   

6.
We present the application of Fourier transform‐second‐harmonic generation (FT‐SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid‐cervix and near the external orifice of the cervix were analyzed in both two‐dimensions (2D) and three‐dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT‐SHG imaging and observe collagen fibers oriented both in and out‐of‐plane in the outermost and the innermost layers, which cannot be observed using 2D FT‐SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans.  相似文献   

7.
Jiang X  Zhong J  Liu Y  Yu H  Zhuo S  Chen J 《Scanning》2011,33(1):53-56
Multiphoton microscopic imaging of collagen plays an important role in noninvasive diagnoses of human tissue. In this study, two-photon fluorescence and second-harmonic generation (SHG) imaging of collagen in human skin dermis and submucosa of colon and stomach tissues were investigated based on multiphoton microscopy (MPM). Our results show that multiphoton microscopic image of collagen bundles exhibits apparently different pattern in human tissues. The collagen bundles can simultaneously reveal its SHG and two-photon excited fluorescence images in the submucosa of colon and stomach, whereas it solely emit SHG signal in skin dermis. The intensity spectral information from tissues further demonstrated the above results. This indicates that collagen bundles have completely different space arrangement in these tissues. Our experimental results bring more detailed information of collagen for the application of MPM in human noninvasive imaging.  相似文献   

8.
Ultrafast lasers have found increasing use in scanning optical microscopy due to their very high peak power in generating multiphoton excitations. A mode-locked Ti:sapphire laser is often employed for such purposes. Together with a synchronously pumped optical parametric oscillator (OPO), the spectral range available can be extended to 1,050-1,300 nm. This broader range available greatly facilitates the excitation of second harmonic generation (SHG) and third harmonic generation (THG) due to better satisfaction of phase matching condition that is achieved with a longer excitation wavelength. Dental sections are then investigated with the contrasts from harmonic generation. In addition, through intra-cavity doubling wavelengths from 525-650 nm are made available for effective two-photon (2-p) excitation with the equivalent photon energy in the UVB range (290-320 nm) and beyond. This new capacity allows UV (auto-) fluorescence excitation and imaging, for example, from some amino acids, such as tyrosine, tryptophan, and glycine.  相似文献   

9.
We describe a novel two‐photon fluorescence microscopy system capable of producing high‐quality second harmonic generation (SHG) images in thick turbid media by using an innovative detection system. This novel detection system is capable of detecting photons from a very large surface area. This system has proven effective in providing images of thick turbid samples, both biological and artificial. Due to its transmission detection geometry, the system is particularly suitable for detecting SHG signals, which are generally forward directed. In this article, we present comparative data acquired simultaneously on the same sample with the forward and epidetection schemes. Microsc. Res. Tech. 77:368–373, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
Background : Multifunctional two‐photon laser scanning microscopy provides attractive advantages over conventional two‐photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. Results : These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two‐photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. Conclusions : With the multifunctional two‐photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.  相似文献   

13.
14.
Optical second‐harmonic generation is a recently developed technique in surface science, the range of applications of which has been steadily broadening. It allows, among other things, the direct probing of molecular adsorption on to a solid substrate from a liquid or gaseous environment. This paper reports on the possibility of applying it to tribological studies. A set of possible experiments that could offer information, in particular, on the working principle of those oil additives, commonly used in the lubricant industry, whose effect derives from surface adsorption, are discussed briefly. In addition, the preliminary results of a first experiment are described.  相似文献   

15.
Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best‐known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second‐harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second‐harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second‐harmonic generation, as a second‐order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser‐scanning microscope. In this work, we combine the axial resolving power of second‐harmonic generation and chiral sensitivity of second‐harmonic generation circular dichroism to realize three‐dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second‐harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second‐harmonic generation circular dichroism response in complicated three‐dimensional biological systems. The sample we use is starch granules whose second‐harmonic generation‐active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second‐harmonic generation for right‐handed circularly polarized excitation is significantly different from second‐harmonic generation for left‐handed one, offering excellent second‐harmonic generation circular dichroism contrast that approaches 100%. In addition, three‐dimensional visualization of second‐harmonic generation circular dichroism distribution with sub‐micrometer spatial resolution is realized. We observed second‐harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second‐harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three‐dimensional structures of starch granules. The second‐harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues.  相似文献   

16.
Collagen change is a major feature in the photoaged human skin. Here, we present the use of intrinsic second harmonic generation (SHG) signal as a novel means to quantify collagen change with photoaging. We obtain the SHG images of the superficial dermis from ex vivo the cheek skin and the abdomen skin of eight patients aged 55–60 years. The results show that SHG signal can quantitatively reveal collagen change between normal and photoaged human skin in three dimensions. By comparing normal with photoaged dermis, there are significant differences in the collagen content and fine structure, providing substantial potential to be applied in vivo for the clinical diagnosis of human skin photoaging. SCANNING 35: 273‐276, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Near-field optical microscopy has been used to image variations in local optical second harmonic generation (SHG) from the surface of lead zirconate titanate (PZT) piezoceramic. As PZT ceramic is a strongly scattering medium, SHG occurs in the thin layer near the surface of the ceramic. Thus, individual crystalline grains and grain boundaries located near the surface are the main features visible in the images. In general, this technique allows us to determine the local poling direction of individual submicrometre-sized crystalline grains of ceramic by near-field SH imaging at different angles of incidence and polarization states of the fundamental excitation light. In some cases 'hot spots' of submicrometre size showing enhanced SHG have been observed. This enhancement is believed to result from local cavity resonances.  相似文献   

19.
In this paper, multiphoton microscopy (MPM), based on two‐photon excited fluorescence and second harmonic generation signals, was used to image microstructures of human rectal mucosa and submucosa. The morphology and distribution of the main components in mucosa layer, goblet cells, intestinal glands, and a little collagen fibers have been clearly monitored, and the content and distribution of collagen, elastic fibers, and blood vessels in submucosa layer have also been distinctly obtained. The variation of these components is very relevant to the pathology in gastrointestinal system, especially early rectal cancer. Our results indicate that the MPM technique has the potential application in vivo in the clinical diagnosis and monitoring of early rectal cancer. SCANNING 32: 347–350, 2010. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
In this paper, microstructures of human oesophageal submucosa are evaluated using multiphoton microscopy, based on two‐photon excited fluorescence and second harmonic generation. The content and distribution of collagen, elastic fibers and cancer cells in normal and cancerous submucosa layer have been distinctly obtained and briefly discussed. The variation of these components is very relevant to the pathology in oesophagus, especially in early oesophageal cancer. Our results further indicate that the multiphoton microscopy technique has the potential application in vivo in clinical diagnosis and monitoring of early oesophageal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号