首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了获得岩石加载过程力学特性与能量演化特征,开展了不同围压下砂岩力学特性试验。基于能量平衡理论,分析不同围压下砂岩加载过程能量转化规律,研究不同围压下砂岩特征应力、裂纹演化与能量耗散之间的关系。结果表明:砂岩三轴压缩加载过程中,试样的裂纹闭合应力、起裂应力、扩容应力及峰值应力均随围压增大呈线性增加;起裂应力和扩容应力可以较好的描述岩石稳定状态,起裂应力可以看作为岩石出现新生微破裂的初始应力,而岩石扩容应力可以认为是进入塑性屈服状态的标志。岩石加载过程中能量演化特征与应力-应变曲线和特征应力呈现较好的对应关系,压密阶段对应的原生裂纹压密过程能量转化率低;弹性变形及微裂纹稳定扩展阶段,外力做功转化的应变能大部分储存为弹性应变能,岩石内部损伤和塑性变形耗散的能量较小;扩容应力后的裂纹非稳定扩展阶段,岩石内部损伤和塑性变形耗散能量明显增大;峰值应力附近,积聚弹性应变能迅速转化为用于岩石破坏的耗散能。耗散比(Ud/U)随轴向应变的增加,呈现增大-减小-再增大的规律,耗散比趋势变化的转折点与裂纹闭合应力和扩容应力对应。耗散能随着轴向裂纹应变的累计逐渐增大,扩容应力前,耗散能随...  相似文献   

2.
岩石在变形破坏过程中不断与外界交换着物质和能量,是一个能量耗散的损伤演化过程,岩石破坏的实质是能量驱动下的状态失稳现象。综合介绍了在开挖瞬间,迅速增大的轴向应力随着时间增长逐渐趋于稳定和围压瞬间卸载的应力重分布情况,目前主要采用轴压升高、围压降低而轴压不变、围岩降低的室内试验方案。结果表明:岩石卸荷破坏具有明显的围压效应,总应变能、弹性应变能和耗散能与初始围压呈正相关关系;随着卸荷速率的增加,能量转化速率不断减小,岩石容易产生瞬间动态破坏;不同卸荷水平下能量演化存在明显的差异;碎屑岩块分形维数越大,扩容现象越明显,穿晶、沿晶裂纹越发育,消耗能量越多。基于现有的研究成果,提出完善试验系统、采用与工程实际相符合的应力路径、开展微细观裂纹研究、深入能量转化敏感阶段研究的发展趋势。  相似文献   

3.
煤中矿物质在燃烧过程中的演化特征   总被引:4,自引:0,他引:4  
通过对煤中矿物成分研究,综合评述煤中矿物质在燃烧过程中的演化特征,结果表明,在不同的燃烧工况条件下煤中矿物质转换为不同的矿物质形态特征。  相似文献   

4.
变形是岩石卸荷破坏过程中的重要特征,岩石中积聚能量的耗散则是卸荷破坏的本质。利用MTS 815.3岩石力学试验系统探究大理岩在峰前卸荷条件下的变形演化规律及破坏耗能特征,主要考虑了应力路径、卸荷速率和卸荷点等因素的影响。结果表明:围压卸至0处体积应变为正时,可制备卸荷损伤破裂岩样,体积应变在卸荷过程中分为3个阶段:稳定阶段、缓慢减小阶段和显著扩容阶段;卸荷过程中,剪胀角与卸荷点呈正相关;变形模量(或广义泊松比)先缓慢减小(增加),随后快速降低(增加),卸荷点越大变形模量(或广义泊松比)转折点处对应的围压越大,卸荷路径对变形模量和广义泊松比影响较小;耗散能与卸荷点呈正相关,升轴压卸围压耗散能>恒轴压卸围压>卸轴压卸围压;不同卸荷路径下吸收能和耗散能随卸荷速率的增加差值逐渐减小,趋于稳定的吸收能和耗散能大小约0.27 MJ/m3和0.16 MJ/m3;卸荷速率控制试样破坏形态,低卸荷速率下,破坏形态以张拉剪切为主,破坏试样表面张拉裂纹和环向裂纹显著;较高卸荷速率下,表面张拉裂纹减少,破坏形式主要为伴随岩块崩落的剪切破坏;卸荷路径和卸荷...  相似文献   

5.
主要叙述了上饶地区自加里东运动以来地质构造的演化过程,指出由于受鹰潭~铅山~广丰深断裂的影响,饶北和饶南两部分在构造演变、沉积特征以及聚煤作用上存在的差异,这一研究对今后找煤具有指导意义。  相似文献   

6.
利用伺服机对大理岩进行了高围压及高围压高水压岩石的卸荷力学试验。基于试验结果,研究了岩样卸围压的变形破坏及其能量特征。结果表明,大理岩峰前卸荷比峰后卸荷表现出更大的脆性;孔隙水压力加速了岩石的脆性破裂,降低了岩石的强度;高围压情况下卸荷比低围压卸荷更容易破坏。  相似文献   

7.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

8.
鸡西盆地构造特征及演化   总被引:2,自引:2,他引:0  
在阐述盆地构造位置与背景的基础上,总结了受敦密断裂带影响所发生的3次裂陷作用;阐述了断裂构造展布概况及断裂基本特征,通过基底构造、盖层构造,结合应力场分析总结了盆地的形成过程及构造演化特征。  相似文献   

9.
为探究构造煤在冲击动载作用下的力学特性,利用分离式霍普金森压杆(SHPB)试验装置对赵庄煤矿3#煤样进行冲击试验,冲击气压设定为0.15、0.2、0.3 MPa。研究结果表明:不同冲击动载作用下,构造煤应变率随应变增大均呈M型,且具有显著的阶段特征,其最大应变率、平均应变率随冲击动载的增大而增加;低应变率条件下,煤样的应力-应变特性表现为显著的脆性材料特征,且动态抗压强度与平均应变率呈线性增大特征。热活化机制是低应变率煤岩动力学特性衍化的决定机制。  相似文献   

10.
为研究深部煤炭回采过程中底板岩体能量变化特征及卸荷劣化机制,开展了不同围压卸载速率下岩石力学试验,综合理论分析和实验室试验分析了不同卸载阶段的岩石损伤断裂能量、弹性模量的变化特征。研究表明:卸围压过程中的岩石变形破坏可划分为围压卸载起始点至失稳破坏、失稳破坏到加速破坏、进入加速破坏3个阶段。在围压卸载起始点至失稳破坏阶段和失稳破坏到加速破坏阶段,相同轴压下,不同围压卸载速率对岩石弹性模量劣化程度产生的影响较小;在围压卸载起始点至失稳破坏阶段,损伤断裂能量消耗较少,但岩石弹性模量劣化程度较为明显;在失稳破坏到加速破坏阶段,弹性模量的劣化程度相比于围压卸载起始点至失稳破坏阶段趋缓,但损伤断裂能量消耗呈现增长变化趋势。在岩石进入加速破坏阶段,卸载速率越快,岩石卸围压过程中释放的损伤断裂能量越大,越易形成宏观贯穿式裂纹,煤层底板突水危险性随之增大。  相似文献   

11.
分阶段卸载条件下突出煤变形特征与渗流特性   总被引:2,自引:0,他引:2       下载免费PDF全文
袁曦  张军伟 《煤炭学报》2017,42(6):1451-1457
为研究下保护层开采过程中采动应力作用下含瓦斯突出煤的渗流特性,利用自制的三轴渗流试验机,进行了恒定轴压卸围压、增大轴压卸围压、轴压围压同时卸载等3种不同加卸载条件下的分阶段卸围压煤样瓦斯渗流试验。试验结果表明:试验中煤样的变形具有明显的阶梯状特性,煤样未破坏时,应变增量随着围压卸载速率的增大而增大。随着围压的卸载,恒定轴压卸围压组和增大轴压卸围压组煤样的偏应力不断增大,其渗透率则呈现出先减小后增大的趋势,而轴压和围压同时卸载组煤样的渗透率则随着围压的卸载,呈现出不断增大的趋势。煤样体积应变变化量较大时,渗透率变化量也大。从能量的角度分析渗透率的变化,发现煤样渗透率均随能量耗散率的增大而呈指数增大。  相似文献   

12.
瓦斯压力对卸荷原煤力学及渗透特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
运用自主研制的含瓦斯煤热流固耦合三轴伺服渗流试验装置,以原煤煤样作为研究对象,在不同瓦斯压力条件下对含瓦斯煤进行了固定轴向应力的卸围压瓦斯渗流试验,研究卸围压过程中瓦斯压力对煤体的力学及渗透特性的影响。研究结果表明:开始卸围压后,煤体出现明显的扩容现象,径向发生明显膨胀应变,煤体中的渗流通道张开,煤体中瓦斯的渗流速率随之加快;随着瓦斯压力的升高,解除单位围压后煤样产生的变形变大,渗流速率升高的速率也随之增大;瓦斯压力越高,煤样从开始卸围压起至破坏的时间越短,即煤体强度越低;在卸围压初始阶段,煤样变形模量变化不大,在进入屈服阶段和失稳破坏阶段后,煤样的变形模量减小的速率开始明显加快。从煤样开始卸围压至破坏之前,煤样的变形模量下降了3.71%~7.45%;煤样的泊松比逐渐增大,围压与泊松比的对应具有较为明显的幂函数关系。  相似文献   

13.
以马兰矿8#煤层煤样为研究对象,进行不同围压下的采动轴向循环加卸载实验,研究煤体渗流特性及能耗损伤特征。结果表明:随着轴向应力的循环加卸载,σ1-ε1曲线呈现螺旋式上升,卸载曲线与下一次的加载曲线之间形成明显的滞回环,加卸载渗透率-应变曲线逐渐变为细长的"条带状"曲线,并在较低围压下出现交叉;随着加卸载次数的增加,渗透率绝对恢复率减小,最大降低率达20%左右,围压越大渗透率恢复越困难。随着加卸载上限应力的增大,煤体在加卸载过程中吸收的总能量、弹性能和耗散能均随着循环次数的增加而增加,煤体的损伤变量也在增大,但增加速率较缓;在循环加卸载结束至煤体屈服点阶段,渗透率随损伤增加呈对数函数减小,直至达到渗透率最低点;在屈服点至煤体破坏阶段,煤体损伤变量增加速率变快,渗透率随损伤的增加呈指数函数增大,煤体开始加速破坏。  相似文献   

14.
本文研究了5对矿井的两种煤样的吸附与放散特性。吸附实验发现构造煤与原生结构煤相比吸附量有所增加,但增加幅度不大,且这种变化的幅度随着变质程度降低而逐渐变大。构造煤煤样的Langmuir吸附常数"a"值均比原生结构煤较大,变化幅度约为1%~4%,而"b"值却没有明显的变化规律。对比原生结构煤与构造煤的煤体表面吸附自由能估算结果得知大部分构造煤样的比表面自由能有所提高,吸附的表面活性增大。瓦斯放散实验发现,构造煤的瓦斯放散初速度变化相对较大,除麒麟矿外,变化幅度在14%~25%之间。这说明构造煤具有更强的放散瓦斯能力。在长期的地质应力作用下,构造煤煤体更加破碎,不仅吸附能力得到了一定的提高,瓦斯能更加顺利的放散。这也是地质构造带具有更大的瓦斯突出危险性的一个原因。  相似文献   

15.
高煤阶煤的阶跃性演化机理研究   总被引:2,自引:0,他引:2  
通过对镜质组反射率的测定、X衍射及显微傅立叶变换红外等实验对高煤阶煤的成分及结构进行了详细的分析,认为高煤阶煤演化具有明显的阶跃性特征。在镜质组最大反射率大于4.5%阶段,高煤阶煤的演化历程表现为环聚合作用与拼叠作用相辅相成、交替进行,从而促使煤阶不断升高。  相似文献   

16.
武成家  秦涛  刘振文  刘刚 《中国矿业》2021,30(2):160-166
为了研究不同冲击倾向性煤样在循环载荷下的力学特征及能量演化规律,对强冲击倾向性煤样、弱冲击倾向性煤样和无冲击倾向性煤样进行系统分析,并提出了弹性能释放速率及计算方法,得到不同冲击倾向性煤样循环载荷下应力-应变曲线的特征、应变变化规律及耗散能和弹性能转化规律,给出不同冲击倾向性煤样破坏与能量演化关系.研究结论如下:无冲击...  相似文献   

17.
吕有厂  秦虎 《煤炭学报》2012,37(9):1505-1510
利用自主研制的含瓦斯煤岩热流固耦合三轴伺服渗流装置对含瓦斯煤岩进行了三轴卸围压试验,基于实验结果,研究了含瓦斯煤岩卸围压失稳破坏过程中的力学特性及其能量耗散规律。结果表明:在初始瓦斯压力和围压相同的情况下,卸围压速率增大加快了含瓦斯煤岩失稳破坏的进程,定义的卸围压效应系数反映了三轴卸围压实验中卸围压速率对含瓦斯煤岩失稳破坏难易程度,且卸围压效应系数与卸围压速率之间存在幂函数的关系;在瓦斯压力和应力差相同的情况下,不同卸围压速率下含瓦斯煤岩的轴向应变、侧向应变和体积应变的变化规律具有较好的一致性,卸围压速率越大,含瓦斯煤岩的轴向应变、侧向应变和体积应变越小;卸围压过程中能量耗散与卸围压速率有关,且含瓦斯煤岩的能量耗散随着卸围压速率的增大而减小。  相似文献   

18.
蔡永博  王凯  袁亮  徐超  付强  孔德磊 《煤炭学报》2019,44(5):1527-1535
为研究保护层开采过程中下伏煤岩体卸荷损伤变形演化特征,运用FLAC~(3D)数值模拟方法及现场实验测量手段,以山西保德煤矿实际情况为研究背景,对保护层开采过程中下伏煤岩体应力、变形、塑性演化规律进行了研究及验证。研究表明:保护层开采过程中,被保护层应力呈增大—减小—增大的变化规律,下伏煤岩体应力在空间上呈现出明显的"O"形应力分布规律;受保护层采动影响,下伏煤层测点经过原岩应力、应力集中、采动卸压、应力恢复4个阶段;最大应力集中系数与最小卸荷比为固定值,且出现时间相同,工作面前方应力集中系数与工作面后方卸荷比均呈往复性变化,变化周期与工作面来压周期相关;本文实例中,最大应力集中系数约为1. 32,此时测点受到的z向应力值达到最大;最小卸压比约为4. 4%,此时测点受到的z向应力值达到最小,卸压效果最好;受应力变化影响,被保护层呈压缩—恢复—膨胀—回缩的基本变化规律,最终状态保持一定的膨胀变形,与应力分区相对应,根据不同变形特征可将下伏煤层分为原岩状态区、压缩变形区、卸压膨胀区、变形恢复区;本文实例中11号煤层最大膨胀变形量约为0. 6%,此时测点裂隙最为发育,增透效果最好,有利于瓦斯卸压抽采;受应力变化影响,下伏煤岩体塑形区域范围在空间上呈先xyz三向增大—x轴方向单向增大y轴z轴2个方向稳定的变化规律;随着工作面的回采,被保护层煤体塑性区范围在x轴方向不断增加;通过实测保德煤矿81307工作面回采过程中下伏11号煤地应力、膨胀变形量,对深部煤岩体卸荷损伤变形演化特征数值模拟结果进行了验证,下伏11号煤地应力、膨胀变形量变化规律与数值模拟规律较为吻合。  相似文献   

19.
王书文  鞠文君  潘俊锋  陆闯 《煤炭学报》2019,44(7):2000-2010
在新建深部矿井,原岩应力区煤巷掘进冲击地压问题日益突出,且现场破坏具有区间性和方位性特征,为揭示这一机制,针对深部构造应力场条件下的煤层掘巷,基于数值模拟和理论分析研究,建立不同掘进速度下围岩弹性能空间分区演化模型,划定能量非稳态释放边界,分析其分布形态与能量特征,结论与现场实际破坏情况较为吻合。研究结果表明:依据弹性能所处状态及变化特征的不同,构造应力场煤巷掘进围岩在空间上可划分为6类区间,顶底板内同时分布能量积聚区和释放区,而巷帮仅存在能量释放区,这与最大主应力的做功特征密切相关。掘进速度增大时,围岩弹性能释放区的走向范围将同时向两端扩展,非稳态释能边界沿走向不断拉长,具有冲击风险的范围不断扩大。构造应力场中,巷帮潜在冲击启动区位于工作面附近,其冲击发生必要条件包括高原岩应力和快速掘进。巷帮和工作面潜在冲击启动区均位于围岩浅部。由于滞后区顶底板能量非稳态释放前积聚水平更高,加上顶板和帮部支护作用,导致底板滞后区冲击破坏强度要大于工作面附近顶底板和巷帮冲击破坏强度。研究结论与构造应力场现实冲击案例较为吻合,对构造应力场煤巷掘进冲击地压监测预警及解危方法的研究具有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号