首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 273 毫秒
1.
对CSP生产的Ti微合金化高强耐候钢的铸坯组织、化学成分偏析、枝晶间距、夹杂物进行研究,结果表明,CSP生产的Ti微合金化高强耐候钢铸坯的低倍组织在结构上和传统板坯及CSP生产的普通集装箱铸坯相差不大,但高强耐候钢铸坯组织更为细密,一次枝晶间距、二次枝晶间距较普通集装箱铸坯稍小.铸坯中偏析较严重的元素是C、S、P,其它元素偏析较轻.铸坯中大颗粒夹杂物较少,主要是Al、Ti、Ca、S类夹杂物,由于Ti、Ca、S含量较少,夹杂物含量较低.而通过对Al类夹杂物进行分析,发现Al类夹杂物在连铸坯横截面上均匀分布,没有明显的偏聚,夹杂物含量在0.001 4%~0.002 2%波动,符合夹杂物存在特性,波动幅度在正常范围内,铸坯中Al夹杂物大部分粒度在2.5 μm以下.  相似文献   

2.
蒲学坤 《中国冶金》2007,17(9):11-11
攀钢采用大方坯连铸工艺生产42CrMo合金结构钢取得明显效果。简介了它所采取的转炉冶炼、LF+RH精炼、连铸的技术方案以及试验结果。生产实践证明,铸坯表面质量良好,成分偏析度可控制在0.96~1.03,中心疏松和中心偏析均不大于1.0级,w(T.O)≤15×10-6,w(H)≤1.8×10-6。  相似文献   

3.
攀钢采用大方坯连铸工艺生产42CrMo合金结构钢取得明显效果。简介了它所采取的转炉冶炼、LF+RH精炼、连铸的技术方案以及试验结果。生产实践证明,铸坯表面质量良好,成分偏析度可控制在0.96~1.03,中心疏松和中心偏析均不大于1.0级,w(T.O)≤15×10-6,w(H)≤1.8×10-6。  相似文献   

4.
采用铸坯低倍检验、原位分析、扫描电镜等方法,分别对高强船板成分优化前后的低倍、偏析和拉伸断口进行对比分析。试验结果表明:优化后的高强船板铸坯低倍及元素偏析明显好于优化前,同时拉伸断口分层也得到明显改善,合格率显著提高。  相似文献   

5.
分析了高碳钢铸坯中心偏析的原因,制定了降低过热度、优化各牌号高碳钢二冷水量等控制措施,借助铸坯内部白亮带验证凝固末端电磁搅拌的搅拌效果,措施实施后铸坯碳偏析指数明显降低,高碳钢铸坯中心偏析问题得到了进一步控制。  相似文献   

6.
刘湃 《世界钢铁》2012,12(2):9-17
分析了高强船板钢中心偏析的成因及其影响因素.中心偏析的形成是因枝状晶晶间富含溶质的钢液流动和积累造成的.这种钢液流动的驱动力来自两方面:一是凝固坯壳收缩和铸辊对坯壳的压缩,二是坯壳在未收缩时开口和铸辊间发生鼓肚引起负压.采取控制钢水化学成分和过热度、稳定拉速、优化二冷配水、加大凝固末端辊缝收缩量等措施可减少连铸坯中心偏析,改善高强船板钢的内部质量.凝固末端实施轻压下对减少中心偏析效果明显.  相似文献   

7.
基于国内某厂齿轮钢小方坯连铸生产过程,利用ProCAST软件建立移动切片模型,能够高效模拟连铸过程中的宏观偏析,模型分别模拟研究了不同过热度、二冷水量和拉坯速度等对宏观偏析的影响。模拟结果与碳偏析检测结果吻合良好,验证了移动切片模型模拟连铸坯宏观偏析的准确性。由于溶质浮力的影响,内弧侧的宏观偏析强于外弧侧。随着过热度的增加,铸坯中心碳偏析度从1.06增加至1.15。过热度控制在25 ℃范围内,可以保证铸坯的宏观碳偏析度控制在1.10范围内。随着连铸二冷水量的增加,铸坯中心偏析改善程度较小,铸坯中心碳偏析度从1.16降低至1.13。随着拉坯速度的增加,铸坯中心偏析呈现加重的趋势,铸坯中心碳偏析度由1.14增加至1.21,拉坯速度控制在1.4 m·min–1范围内,可保证铸坯中心碳偏析度低于1.15。   相似文献   

8.
苏晓峰  徐党委 《河南冶金》2010,18(1):8-9,31
采用铸坯低倍、原位分析、扫描电镜和统计等方法,对高强船板降锰前后的低倍、锰元素偏析和拉伸断口合格率进行了研究。通过降锰,高强船板的铸坯低倍和锰元素偏析明显好于降锰前的情况,同时拉伸断口没有以前的分层现象、合格率显著提高。  相似文献   

9.
以现场试验和实验室分析相结合的方法,对不同连铸工艺条件下生产的82B铸坯的碳硫偏析行为进行了系统研究。结果表明:过热度、拉速和末搅拌三个影响铸坯偏析的因素所起的作用随铸坯内部位置和偏析元素种类的不同而不同。针对中心碳硫偏析,拉速的影响大于其它两个因素。在拉速提高的情况下,适当增加二冷强度可以有效地减轻铸坯的碳硫偏析特别是中心部位的碳硫偏析。中间包的水力学模拟表明适宜的拉速为1.8 m/min。  相似文献   

10.
为改善宽厚板连铸坯的缩孔、疏松和偏析缺陷,河钢唐钢建成投产了国内首条宽厚板连铸坯重压下生产线。通过低倍和金属原位分析试验对比分析了不同压下量对连铸坯内部质量的影响。试验结果表明:随着压下量从0mm增加到24mm,连铸坯中心偏析等缺陷逐渐得到改善,24mm重压下时中心偏析等级仅为C 0.5级;通过原位分析试验发现,相较于轻压下,重压下后铸坯碳的最大偏析度由1.355降低到1.193,硫的最大偏析度由3.772降低到1.631,磷的最大偏析度由2.246降低到1.336,铸坯的致密度由96.76%提升到97.40%,说明板坯重压下是实现高致密度、均质化大断面铸坯生产的有效技术。  相似文献   

11.
管线钢作为石油、天然气等管道运输的主要材料,其元素分布及组织结构对管线钢强度和韧性有较大影响。实验采用原位统计分布分析技术对管线钢连铸板坯板宽中心到板宽1/4处的中心区域中C、Mn、P、S、V、Ti、Nb元素的偏析和分布状态进行了定量统计分析研究。采用最大偏析度、统计偏析度、统计均匀度等指标对各元素的偏析分布进行了定量表征。研究结果表明,C、Mn、P、S、V、Nb元素的偏析分布形式基本类似,都在板厚中心线附近和板宽1/4处的厚度方向存在由局部富集区域组成的带状偏析带。其中,C、P、S元素的偏析较为严重,统计偏析度达到20%以上。Ti元素没有观察到明显的偏析,在整个分析区域分布比较均匀。  相似文献   

12.
高强度船板AH36的断口不合原因分析   总被引:1,自引:0,他引:1  
白锦函  刘社牛  吴静  樊建刚  董浩 《河南冶金》2009,17(3):25-26,49
本文针对安钢高强度船板AH36的拉伸断口分层现象进行了分析.结果表明断口分层是由于铸坯中心偏析和中心疏松造成的.通过优化AH36的化学成分和连铸、轧制工艺,改善了铸坯中心偏析和中心疏松,消除了钢的异常微观组织,提高了AH36的一次合格率.  相似文献   

13.
摘要:针对600MPa钢筋横截面心部附近出现明显的条带状异常组织,采用金相显微镜、SEM、EDS及维氏硬度方法对试样进行分析。结果表明:心部条带状异常组织为退化珠光体,该条带状组织主要由于冶炼工序的铸坯存在Mn元素偏析,并在后续轧制过程中形成的条状偏析带。针对上述情况,通过提高转炉出钢合金窄成分控制、采用高碱度大渣量、优化结晶器电磁搅拌参数、中间包低过热度及水口全程密封浇铸措施,有效改善了铸坯心部的元素偏析,避免了钢筋条带状异常组织的产生,提高了产品质量。  相似文献   

14.
张鹏云 《宽厚板》2009,15(6):17-20
以E36为例介绍了采用TMCP工艺生产A32~E36系列高强度船用结构钢的成分设计和工艺设计。该钢种化学成分符合GB712及DNV、LR等六国船级社标准的要求。采用TMCP工艺,通过晶粒细化和析出强化保证钢材的强韧性。工业试制所生产的钢板采用连铸板坯,钢板最大厚度可达60mm,各项力学性能完全符合船规要求。  相似文献   

15.
为了更好地了解铸坯中元素偏析、疏松和夹杂物分布规律,采用金属原位分析仪对帘线钢72A连铸坯进行了原位成分统计分布分析,并探讨了铸坯中C、Si、Mn、P、S和Al元素分布规律,发现C、Si、Mn和P元素在铸坯中心都存在明显的偏析,且中心区域的偏析程度比边部严重。Mn元素含量的分布规律与C元素相似,在铸坯边部附近,C、Mn元素有明显的负偏析带,在铸坯中心区域元素出现了明显的正偏析带,整体上,Mn元素成分分布比C元素更均匀;比较这几种元素的成分分布,发现Si元素成分分布较均匀,而P元素成分分布较不均匀。帘线钢中Al、S元素基本上都以夹杂物的形式存在,两种元素分布规律极其相似,且中心夹杂物的含量明显比边部多。由于铸坯中心存在明显的缩孔,导致铸坯表观致密度下降,表观致密度为0.869 0。  相似文献   

16.
在钢铁轧制及后续工艺中,需要掌握连铸方坯的元素偏析情况。本文采用原位统计分布分析技术研究了高碳钢连铸方坯中C、Si、Mn、P、S、Cr 等元素的偏析状态,重点讨论了金属原位仪的扫描速度优化对分析结果的影响。将连铸方坯中心线部分原位分析的一维偏析分布图与ICP-AES 和红外吸收法多点取样分析的偏析分布图进行了对比,发现两种方法的偏析分布图具有良好的一致性,表明原位统计分布分析技术能较好的应用于连铸坯的元素偏析检验。  相似文献   

17.
张婷婷 《冶金分析》2017,37(5):19-24
针对轻压下两种不同加压分配位置,采用原位统计分布分析方法对两炉管线钢板坯的偏析和致密度进行了对比分析。方法定量检测出了管线钢板坯的偏析和疏松部位及变化情况,从板坯不同部位碳元素分布和致密度的二维等高图中,可以直观地呈现出板坯的缺陷和疏松情况。实验结果表明,连铸过程中,在钢水成分、中包温度、过热度、拉速、压下量均相同,压下分配位置不同的条件下,试验样品中碳元素的偏析和致密度有所不同,不同的压下位置能够改善板坯偏析和致密度,进而提高板坯的质量。  相似文献   

18.
高强耐候钢YQ450NQR1钒氮微合金化   总被引:2,自引:0,他引:2  
卿家胜  沈厚发  刘明 《钢铁》2017,52(5):87-93
 钒氮微合金化是高强耐候钢YQ450NQR1强化屈服强度的重要途径。钒氮微合金化对高强耐候钢YQ450NQR1性能的影响主要由钒和氮两部分构成,其中钒产生晶粒细化、析出强化的主要作用,氮强化钒的作用。通过高强耐候钢YQ450NQR1的钒氮积[w(V)·w(N)]研究,发现钒和氮质量分数的增加均可提高钢的屈服强度,同时钒和氮也呈乘积的方式对屈服强度产生影响。为保证高强耐候钢YQ450NQR1的屈服强度达到465 MPa,要求钒氮积[w(V)·w(N)]达到0.001 44以上。为提高连铸坯的高温塑性,降低铸坯裂纹发生的敏感性,氮质量分数需控制为0.012%~0.014%。  相似文献   

19.
杨晓江 《中国冶金》2016,26(12):36-39
针对唐钢薄板坯连铸连轧线生产高碳钢65Mn出现的带钢表面翘皮和铸坯内部偏析问题,分析了缺陷产生的原因机理。带钢表面翘皮为铸坯边部在矫直过程中形成角裂轧制而成,铸坯内部质量问题主要影响因素为连铸二冷强度、软压下终点位置和钢中硫质量分数。通过调整LF脱硫工艺、优化连铸保护渣、提高二冷水强度、调整软压下终点等措施,有效控制了高碳钢65Mn带钢表面翘皮缺陷和铸坯内部偏析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号