共查询到20条相似文献,搜索用时 62 毫秒
1.
大方坯连铸结晶器浸入式水口结构优化 总被引:1,自引:0,他引:1
通过物理模拟实验,测定所设计的系列水口在不同工况条件下,结晶器内液面波动、冲击压力及保护渣覆盖情况,经优化后,找出较佳水口;再应用流场计算软件FLUENT及水力模型,对所选水口进行结晶器内钢液的流场和温度场特性分析,优选出适合大方坯连铸工艺的浸入式水口结构形式,并在生产中得到了验证. 相似文献
2.
3.
以某钢厂宽板坯连铸结晶器为研究对象,利用商业软件PHOENICS建立一个三维有限差分模型,模拟宽板坯连铸结晶器内钢液的流动分布.通过分析水口底型、倾角、插入深度等工艺参数对钢液面波动、流股对结晶器窄面的冲击力及涡心高度的影响,得出适用于宽规格结晶器的合理的浸入式水口.通过研究,为优化宽板坯结晶器内钢液的流场及浸入式水口的设计提供了科学依据. 相似文献
4.
5.
6.
7.
方坯连铸结晶器浸入式水口结构类型的研究 总被引:3,自引:0,他引:3
应用流场计算软件PHOENICS及水力模型,模拟了方坯连铸结晶器内钢液的流场和流动分布。在此基础上模拟计算了几种不同形式的水口对流动形态的影响,并用水力模型试验进行了验证。通过数值模拟,为优化结晶器内钢液的流场以及浸入式水口的设计提供了科学依据。 相似文献
8.
利用Fluent计算软件建立三维数学模型对马钢板坯连铸结晶器内钢液的流场和温度场进行数值模拟研究,并进行正交试验,分析了水口浸入深度(150~190 mm) 、水口侧孔倾角(-10°~-16°) 、水口侧孔与中孔的截面积比值(2,2~3.2)对拉速0.9 m/s,230 mm×1800 mm结晶器内钢液流动的影响。研究结果表明,水口浸入深度和倾角对结晶器液面波动F数和凝固坯壳厚度的影响较为显著。对于浇铸断面230 mm×1800 mm的结晶器浸入式水口的最佳工艺参数为:浸入深度170 mm、水口侧孔倾角13°、侧孔出口与中孔面积比2.7。 相似文献
9.
根据国内某钢厂薄板坯连铸机条件(断面1600mm^2×70mm^2;拉速3.0m/min-6.0m/min),采用物理模拟和数值模拟的方法对所设计的水口进行实验,对实验所测的液面波动、冲击压力、冲击深度和保护渣覆盖结果进行分析,得出水口参数的影响规律及实验优化结果:认为5号方案的实验效果最为理想。 相似文献
10.
以济钢板坯连铸结晶器为原型,采用几何相似比为1∶1,弗鲁德准数与原型相等的水模型进行试验,研究了不同拉速条件下,不同浸入式水口的侧孔倾角和出口尺寸对板坯结晶器内流场和液面波动行为的影响。结果表明:拉速一定的条件下,随着水口侧孔倾角和出口尺寸增大,液面波动减小,上、下涡心位置离结晶器窄面越近且冲击深度增加。综合考虑,选用侧孔倾角为5°、出口尺寸为100mm×65mm×R32.5mm的水口。 相似文献
11.
12.
使用数值模拟方法研究了拉速0.9m/min时,水口倾角-7°~-11°对220mm×1600mm板坯结晶器内坯壳厚度、坯壳温度和自由液面流动的影响。模拟和应用结果得出,以拉速0.8m/min,水口倾角-15°工艺下钢液流动为标准,通过对比计算结果与标准工艺曲线,确定在0.9m/min拉速时,水口倾角为-11°为最佳工艺方案。生产应用结果表明,采用优化工艺后结晶器窄面报警频率由原15次/月降至0次/月,铸坯表面质量也有一定改善。 相似文献
13.
基于涟钢板坯连铸机结构参数和冷却条件,建立了Q235B 230 mm×1 280 mm板坯连铸过程凝固传热的数值模型,研究了铸坯温度分布和坯壳厚度变化规律以及过热度和拉速对铸坯温度和凝固末端位置的影响规律。得出:随过热度和拉速的增加,铸坯中心和角部温度整体呈升高趋势,在其它参数不变的条件下,过热度每升高10℃,铸坯凝固末端和液相消失位置分别后移约0.38 m和0.31 m;拉速每升高0.1 m/min,凝固末端和液相消失位置分别后移2.06 m和1.4 m。通过数值模拟研究,掌握了铸坯温度和凝固末端位置的变化规律。 相似文献
14.
15.
16.
17.
以950 kg/m H型连铸坯结晶器为研究对象,采用FLUENT软件建立三维几何模型,模拟研究了水口浸入深度125 mm和175 mm时拉速(0.6~1.2 m/s)对结晶器内钢液传递特性的影响。结果表明,不同拉速条件下H型坯结晶器内钢液流态相似,但随着拉速的增大,结晶器内钢液流股冲击深度增大和结晶器自由表面流速增大,保护渣熔化状况有改善趋势,同时结晶器液面波动和钢水对凝固坯壳的冲刷有增大趋势。而各粒径夹杂物上浮去除率随拉速的增大而降低,其中大颗粒夹杂物去除率降低显著,当拉速由0.6 m/min增至1.2 m/min时,100μm夹杂物的去除率由16%降至10%。该模拟条件下,20~100μm夹杂物去除率在4%~16%。 相似文献
18.
19.
针对津西钢铁厂H型钢Q235B(0.14%~0.18%C)铸坯(宽面550 mm,窄面440 mm,腹板90 mm)经常出现纵裂等缺陷,基于原有保护渣(%:29~30SiO2、25~26CaO、10~11Al2O3、3.0~3.5Fe2O3、15~17C、≤0.5H2O),通过正交实验和优化设计,开发出一种高性能保护渣(%:37.50SiO2、37.50CaO、6Al2O3、7CaF2、12Na2O、7石墨、1.5炭黑)。与原保护渣相比,优化渣的半球点温度、粘度和熔化时间分别从1 167℃,0.77 Pa·s和57 s下降至1 092℃,0.27 Pa·s和32.5 s。优化渣应用表明,当拉速由0.98 m/min提高到1.2 m/min时,铸坯质量良好。 相似文献