首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, due to the rapid growth of electronic data having graph structures such as HTML and XML texts and chemical compounds, many researchers have been interested in data mining and machine learning techniques for finding useful patterns from graph-structured data (graph data). Since graph data contain a huge number of substructures and it tends to be computationally expensive to decide whether or not such data have given structural features, graph mining problems face computational difficulties. Let be a graph class which satisfies a connected hereditary property and contains infinitely many different biconnected graphs, and for which a special kind of the graph isomorphism problem can be computed in polynomial time. In this paper, we consider learning and mining problems for  . Firstly, we define a new graph pattern, which is called a block preserving graph pattern (bp-graph pattern) for  . Secondly, we present a polynomial time algorithm for deciding whether or not a given bp-graph pattern matches a given graph in  . Thirdly, by giving refinement operators over bp-graph patterns, we present a polynomial time algorithm for finding a minimally generalized bp-graph pattern for  . Outerplanar graphs are planar graphs which can be embedded in the plane in such a way that all of vertices lie on the outer boundary. Many pharmacologic chemical compounds are known to be represented by outerplanar graphs. The class of connected outerplanar graphs satisfies the above conditions for  . Next, we propose two incremental polynomial time algorithms for enumerating all frequent bp-graph patterns with respect to a given finite set of graphs in  . Finally, by reporting experimental results obtained by applying the two graph mining algorithms to a subset of the NCI dataset, we evaluate the performance of the two graph mining algorithms.  相似文献   

2.
Relations between states and maps, which are known for quantum systems in finitedimensional Hilbert spaces, are formulated rigorously in geometrical terms with no use of coordinate (matrix) interpretation. In a tensor product realization they are represented simply by a permutation of factors. This leads to natural generalizations for infinite-dimensional Hilbert spaces and a simple proof of a generalized Choi Theorem. The natural framework is based on spaces of Hilbert-Schmidt operators and the corresponding tensor products of Hilbert spaces. It is proved that the corresponding isomorphisms cannot be naturally extended to compact (or bounded) operators, nor reduced to the trace-class operators. On the other hand, it is proven that there is a natural continuous map from trace-class operators on (with the nuclear norm) into compact operators mapping the space of all bounded operators on into trace class operators on (with the operator-norm). Also in the infinite-dimensional context, the Schmidt measure of entanglement and multipartite generalizations of state-maps relations are considered in the paper.  相似文献   

3.
We investigate interpretations of formulas ψ in a first order fuzzy logic in models which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations are then morphisms in a category SetR(Ω) from some Ω-set to the object . We define homomorphisms between models in a category SetR(Ω) and we prove that if is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations of a formula ψ in models . Supported by MSM6198898701, grant 201/07/0191 of GAČR and grant 1M0572.  相似文献   

4.
5.
Escape analysis of object-oriented languages approximates the set of objects which do not escape from a given context. If we take a method as context, the non-escaping objects can be allocated on its activation stack; if we take a thread, Java synchronisation locks on such objects are not needed. In this paper, we formalise a basic escape domain as an abstract interpretation of concrete states, which we then refine into an abstract domain which is more concrete than and, hence, leads to a more precise escape analysis than . We provide optimality results for both and , in the form of Galois insertions from the concrete to the abstract domains and of optimal abstract operations. The Galois insertion property is obtained by restricting the abstract domains to those elements which do not contain garbage, by using an abstract garbage collector. Our implementation of is hence an implementation of a formally correct escape analyser, able to detect the stack allocatable creation points of Java (bytecode) applications.  相似文献   

6.
7.
S. Oliveira  F. Yang 《Computing》2007,80(2):169-188
Hierarchical matrices ( -matrices) approximate matrices in a data-sparse way, and the approximate arithmetic for -matrices is almost optimal. In this paper we present an algebraic approach for constructing -matrices which combines multilevel clustering methods with -matrix arithmetic to compute the -inverse, -LU, and the -Cholesky factors of a matrix. Then the -inverse, -LU or -Cholesky factors can be used as preconditioners in iterative methods to solve systems of linear equations. The numerical results show that this method is efficient and greatly speeds up convergence compared to other approaches, such as JOR or AMG, for solving some large, sparse linear systems, and is comparable to other -matrix constructions based on Nested Dissection.  相似文献   

8.
An instance of the path hitting problem consists of two families of paths, and ℋ, in a common undirected graph, where each path in ℋ is associated with a non-negative cost. We refer to and ℋ as the sets of demand and hitting paths, respectively. When p∈ℋ and share at least one mutual edge, we say that p hits q. The objective is to find a minimum cost subset of ℋ whose members collectively hit those of . In this paper we provide constant factor approximation algorithms for path hitting, confined to instances in which the underlying graph is a tree, a spider, or a star. Although such restricted settings may appear to be very simple, we demonstrate that they still capture some of the most basic covering problems in graphs. Our approach combines several novel ideas: We extend the algorithm of Garg, Vazirani and Yannakakis (Algorithmica, 18:3–20, 1997) for approximate multicuts and multicommodity flows in trees to prove new integrality properties; we present a reduction that involves multiple calls to this extended algorithm; and we introduce a polynomial-time solvable variant of the edge cover problem, which may be of independent interest. An extended abstract of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms, 2006. This work is part of D. Segev’s Ph.D. thesis prepared at Tel-Aviv University under the supervision of Prof. Refael Hassin.  相似文献   

9.
A traveling salesman game is a cooperative game . Here N, the set of players, is the set of cities (or the vertices of the complete graph) and c D is the characteristic function where D is the underlying cost matrix. For all SN, define c D (S) to be the cost of a minimum cost Hamiltonian tour through the vertices of S∪{0} where is called as the home city. Define Core as the core of a traveling salesman game . Okamoto (Discrete Appl. Math. 138:349–369, [2004]) conjectured that for the traveling salesman game with D satisfying triangle inequality, the problem of testing whether Core is empty or not is -hard. We prove that this conjecture is true. This result directly implies the -hardness for the general case when D is asymmetric. We also study approximately fair cost allocations for these games. For this, we introduce the cycle cover games and show that the core of a cycle cover game is non-empty by finding a fair cost allocation vector in polynomial time. For a traveling salesman game, let and SN, x(S)≤εc D (S)} be an ε-approximate core, for a given ε>1. By viewing an approximate fair cost allocation vector for this game as a sum of exact fair cost allocation vectors of several related cycle cover games, we provide a polynomial time algorithm demonstrating the non-emptiness of the log 2(|N|−1)-approximate core by exhibiting a vector in this approximate core for the asymmetric traveling salesman game. We improve it further by finding a -approximate core in polynomial time for some constant c. We also show that there exists an ε 0>1 such that it is -hard to decide whether ε 0-Core is empty or not. A preliminary version of the paper appeared in the third Workshop on Approximation and Online Algorithms (WAOA), 2005.  相似文献   

10.
Kierstead et al. (SIAM J Discret Math 8:485–498, 1995) have shown 1 that the competitive function of on-line coloring for -free graphs (i.e., graphs without induced path on 5 vertices) is bounded from above by the exponential function . No nontrivial lower bound was known. In this paper we show the quadratic lower bound . More precisely, we prove that is the exact competitive function for ()-free graphs. In this paper we also prove that 2 - 1 is the competitive function of the best clique covering on-line algorithm for ()-free graphs.  相似文献   

11.
We present a continuation-passing-style (CPS) transformation for some dynamic delimited-control operators, including Felleisen’s and , that extends a standard call-by-value CPS transformation. Based on this new transformation, we show how Danvy and Filinski’s static delimited-control operators and simulate dynamic operators, allaying in passing some skepticism in the literature about the existence of such a simulation. The new CPS transformation and simulation use recursive delimited continuations to avoid undelimited control and the overhead it incurs in implementation and reasoning.  相似文献   

12.
13.
We develop new techniques for the automated construction of models for subclasses of equational clausal logic. The models are represented by some specific class of rewrite rules. We show that the evaluation of arbitrary first-order formulae in these interpretations is a decidable problem. As an example of an application, we consider the class , a decidable subclass of first-order clausal logic without equality. In the equational case, is undecidable, but it is known to be decidable if all the equational literals are ground. We extend this result to a class of clause sets possibly containing nonground equational literals. The algorithms for extracting models from positively disconnected saturated sets proposed by Fermüller and Leitsch are extended in order to handle the full ordering restrictions of the resolution/paramodulation calculus.  相似文献   

14.
The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper, we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits and are entangled states of 2 n basis states in .   相似文献   

15.
In this paper we are going to introduce the notion of strong non-standard completeness (SNSC) for fuzzy logics. This notion naturally arises from the well known construction by ultraproduct. Roughly speaking, to say that a logic is strong non-standard complete means that, for any countable theory Γ over and any formula φ such that , there exists an evaluation e of -formulas into a -algebra such that the universe of is a non-Archimedean extension of the real unit interval [0,1], e is a model for Γ, but e(φ) < 1. Then we will apply SNSC to prove that various modal fuzzy logics allowing to deal with simple and conditional probability of infinite-valued events are complete with respect to classes of models defined starting from non-standard measures, that is measures taking value in .  相似文献   

16.
This paper deals with multidimensional systems, for example, systems described by linear, constant coefficient partial differential/difference equations. In the behavioral approach, the notion of interconnection is the basis of control. In this setting, feedback interconnection of systems is based on the still more fundamental concept of regular interconnection, which has been introduced by J.C. Willems. The dual problem of regular interconnection is the one of direct sum decomposition. The following two problems are addressed: given a behavior and one of its sub-behaviors , under what conditions does there exist another sub-behavior such that has finite dimension and has finite codimension with respect to i.e. we treat the direct sum decomposition of up to finite-dimensional behaviors, which, in this context, are considered negligible. The second related problem concerns regular interconnections and reads as follows: given a plant behavior together with a desired behavior, find, if possible, another behavior (a controller) such that the interconnection is regular and has finite codimension with respect to the given desired behavior. A constructive solution to the problems is provided for two-dimensional behaviors.  相似文献   

17.
It is proved that “FIFO” worksharing protocols provide asymptotically optimal solutions to two problems related to sharing large collections of independent tasks in a heterogeneous network of workstations (HNOW) . In the , one seeks to accomplish as much work as possible on during a prespecified fixed period of L time units. In the , one seeks to complete W units of work by “renting” for as short a time as necessary. The worksharing protocols we study are crafted within an architectural model that characterizes via parameters that measure ’s workstations’ computational and communicational powers. All valid protocols are self-scheduling, in the sense that they determine completely both an amount of work to allocate to each of ’s workstations and a schedule for all related interworkstation communications. The schedules provide either a value for W given L, or a value for L given W, hence solve both of the motivating problems. A protocol observes a FIFO regimen if it has ’s workstations finish their assigned work, and return their results, in the same order in which they are supplied with their workloads. The proven optimality of FIFO protocols resides in the fact that they accomplish at least as much work as any other protocol during all sufficiently long worksharing episodes, and that they complete sufficiently large given collections of tasks at least as fast as any other protocol. Simulation experiments illustrate that the superiority of FIFO protocols is often observed during worksharing episodes of only a few minutes’ duration. A portion of this research was presented at the 15th ACM Symp. on Parallelism in Algorithms and Architectures (2003).  相似文献   

18.
The h-h/2-strategy is one well-known technique for the a posteriori error estimation for Galerkin discretizations of energy minimization problems. One considers to estimate the error , where is a Galerkin solution with respect to a mesh and is a Galerkin solution with respect to the mesh obtained from a uniform refinement of . This error estimator is always efficient and observed to be also reliable in practice. However, for boundary element methods, the energy norm is non-local and thus the error estimator η does not provide information for a local mesh-refinement. We consider Symm’s integral equation of the first kind, where the energy space is the negative-order Sobolev space . Recent localization techniques allow to replace the energy norm in this case by some weighted L 2-norm. Then, this very basic error estimation strategy is also applicable to steer an h-adaptive algorithm. Numerical experiments in 2D and 3D show that the proposed method works well in practice. A short conclusion is concerned with other integral equations, e.g., the hypersingular case with energy space and , respectively, or a transmission problem. Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday.  相似文献   

19.
20.
Contextual component frameworks, such as Enterprise JavaBeans (EJB), allow for components to specify boundary conditions for the runtime context. These conditions are satisfied at runtime by services of the underlying platform, thus ensuring that the context in which components run exhibits properties that allow them to operate correctly. Depending on how components call each other, it is possible that satisfying such conditions lead to problems such as reduced performance due to redundant service execution, or permanent errors (composition mismatches), due to incompatible boundary conditions. Currently, the semantics of these boundary conditions are expressed in natural language only, making it impossible to incorporate them into an automatic analysis tool. Furthermore, early understanding of how components call each other would be necessary, but it is currently difficult to achieve by means of a tool, as the method dispatch rules in a component system differ from the dispatch rules of the programming language(s) in which they were developed. We have developed a metamodel, , for describing boundary conditions, an analysis method, , and a static component-level call graph extraction method for EJB applications, CHA EJB . uses models to analyze inter-component call graphs, and thus detect problems such as composition mismatches or redundancies, thus allowing for remedial action to take place. We present and CHA EJB in this article, show that produces correct results, and describe a prototype analysis tool implementing the three, which we used to validate our approach on two popular EJB applications. The support of the Informatics Commercialisation initiative of Enterprise Ireland is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号