首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The water gap between the wall and the core of the RPV (Reactor Pressure Vessel) in a VVER-440 plant is small compared with typical Western type LWR5. The neutron fluence on the RPV wall is, consequently, much higher in a VVER-440 plant. In older VVER-440 plants the material of the RPV, especially the horizontal core weld, contains so much impurities (P- and Cu-content) that the irradiation embrittlement has become a problem. On bases of fracture mechanics analyses in Loviisa, IVO has been forced to make several measures to ensure safe operation of the plants. According to IVO's current understanding, both plants may be in operation for the design life without annealing of the RPVs.  相似文献   

2.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

3.
Detailed simulation of the thermal stresses of the reactor pressure vessel (RPV) wall in case of pressurized thermal shock (PTS) requires the simulation of the thermal mixing of cold high-pressure safety injection (HPI) water injected to the cold leg and flowing further to the downcomer. The simulation of the complex mixing phenomena including, e.g., stratification in the cold leg and buoyancy driven plume in the downcomer is a great challenge for CFD methods and requires careful validation of the used modelling methods.The selected experiment of Fortum mixing test facility modelling the Loviisa VVER-440 NPP has been used for the validation of CFD methods for thermal mixing phenomena related to PTS. The experimental data includes local temperature values measured in the cold leg and downcomer. Conclusions have been made on the applicability of used CFD method to thermal mixing simulations in case with stratification in the cold leg and buoyant plume in the downcomer.  相似文献   

4.
The project on ex-vessel core melt stabilization research (ECOSTAR) started in January 2000 to be concluded by end of 2003. The project is performed by 14 partner institutions from five European countries and involves a large number of experiments with low- and high-temperature simulant melts and real corium at different scales. Model development and scaling analysis allows application of the research results to existing and to future LWRs in the area of reactor design and accident mitigation. The project is oriented toward the analysis and mitigation of severe accident sequences that could occur in the ex-vessel phase of a postulated core melt accident. The issues are: (1) the release of melt form the pressure vessel, (2) the transfer and spreading of the melt on the basement, (3) the analysis of the physical–chemical processes that are important for corium behavior especially during concrete erosion with onset of solidification, and (4) stabilization of the melt by cooling through direct water contact. The results achieved so far resolve a number of important issues: the amount of melt that could be transferred at RPV failure from the RPV into the containment can be substantially reduced by lowering the residual pressure in the primary circuit. It is found that melt dispersion also strongly depends on the location of the RPV failure, and that lateral failure results in substantially less melt dispersion. During melt release, the impinging melt jet could erode parts of the upper basement surface. Jet experiments and a derived heat transfer relation allow estimation of its contribution to concrete erosion. Spreading of the corium melt on the available basement surface is an important process, which defines the initial conditions for concrete attack or for the efficiency of cooling in case of water contact, respectively. Validation of the spreading codes based on a large-scale benchmark experiment is underway and will allow determination of the initial conditions, for which a corium melt can be assumed to spread homogeneously over the available surface. Experiments with UO2-based corium melts highlight the role of phase segregation during onset of melt solidification and during concrete erosion. To cool the spread corium melt, the efficacy of top flooding and bottom flooding is investigated in small-scale and in large-scale experiments, supported by model developments. Project assessment is continuing to apply the results to present and future reactors.  相似文献   

5.
ABSTRACT

In the event of a severe accident, past experiences such as Three Mile Island and Fukushima Daichi have shown that the reactor core of a light-water nuclear reactor, if not properly safeguarded, could go through a meltdown. This will be followed by the formation of a corium, a mix of molten fuel elements, and liquid metals from the Reactor Pressure Vessel (RPV). In the worst-case scenario, a melt through from the RPV can occur and lead to the spreading of the corium, in the form of a molten element’s jet impinging on a flat concrete structure of the Primary Containment Vessel (PCV). To enhance the decommissioning and the safety procedure, scope of the present article is to deepen the understanding of the phenomena involved in the mentioned scenario, mainly jet-instability and molten material spreading. In the present study, experiments were carried out, by using corium simulant materials such as Copper and Tin, to investigate the link between the instability of the gravity-driven molten metal jet and the impinging followed by its spreading over a flat area.  相似文献   

6.
During a severe accident of Pressurized Water Reactor(PWR), the core materials was heated, melt located on the lower head of Reactor Pressure Vessel(RPV). With the temperature rise, the corium will melt through the lower head and discharge into the reactor cavity. Those corium will interact with the concrete and damage the integrity of the containment, so some coolability method should used to quench the corium. In order to investigate the progress of MCCI, a MCCI analysis code, that is MOCO, was developed. The MOCO includes the heat transfer behavior in axial and radial directions from the molten corium to the basemat and sidewall concrete, crust generation and growth, and coolability mechanisms reveal the concrete erosion and gas release, which are important for the interaction process. Cavity ablation depth, melt temperature, and gas release are the key parameters in the interaction research. The physical-chemistry reaction is also involved in MOCO code. In the present paper, the related MCCI experiment data were used to verify the models of the MOCO and the calculation results of MOCO were also compared with other MCCI analysis codes.  相似文献   

7.
《Annals of Nuclear Energy》2006,33(11-12):966-974
External reactor vessel cooling (ERVC) is considered as one of the most promising severe accident management strategies for an in-vessel corium retention (IVR). Heat removal capacity and water availability at the vessel outer surface can be key factors determining the success of ERVC measures. In this study, for the investigations on the effect of water availability in case of ERVC, flow analyses using the RELAP5/MOD3 code were performed. The analyses were focused to examine the flow behavior inside the reactor pressure vessel (RPV) insulator of the OPR1000 (Optimized Power Reactor 1000 MWe) under a cavity flooding. The current flow analyses results show that for the accident scenarios of station black out (SBO) and 9.6 in. large break loss of coolant accident (LBLOCA) under the ERVC, steam could not ventilate through the insulator and the pressure inside the RPV insulator increased abruptly. This induced a water sweep out and steam domination in the flow path inside the insulator. These flow analyses results indicate that sufficient water ingression and steam venting through the insulator can be a key factor determining the success of the ERVC in the operating nuclear power plant, OPR1000. According to the results of the sensitivity studies for the venting area, in terms of an effective flow circulation inside the insulator, an optimal venting is to assign four holes having a diameter of 0.3 m at the upper exit (hot leg level) of the insulator. And the effect of the inlet flow area at the insulator bottom is rather minor when compared to that of the outlet flow area of a steam venting.  相似文献   

8.
熔融物反应堆压力容器(RPV)内滞留(IVR)是三代核电厂重要的严重事故缓解措施,而防止RPV的热工失效和结构失效是实现IVR的前提。本文建立考虑内壁面熔蚀的RPV有限元模型,在温度场分析的基础上,开展蠕变计算,得到不同时刻下的应力应变响应,通过选取典型评定路径并利用基于Larson-Miller参数的累积损伤理论进行蠕变损伤计算及评价。分析结果表明:在考虑一定内压的IVR条件下,RPV不会发生蠕变断裂,长期结构完整性可保证。本文的研究方法可为后续核电厂RPV在IVR条件下的结构完整性分析提供参考。  相似文献   

9.
10.
在核电事故中当堆芯熔融物落入反应堆压力容器(RPV)下封头时,如果实际热流密度超过RPV的临界热流密度(CHF),RPV将会被熔穿,造成事故的进一步扩大。为研究RPV在氧化条件下和有添加剂的工质中的CHF特性,采用池沸腾实验方法,以去离子水为工质,研究了RPV常用材料SA508钢经高温预氧化、7次池沸腾传热实验氧化后的CHF特性以及工质中添加剂对其CHF的影响。结果表明:在625 ℃下预氧化8 h后,SA508钢表面产生的较薄氧化层能增加传热面积、表面粗糙度和亲水性,从而提高CHF;随着池沸腾实验次数的增加,SA508钢表面的氧化腐蚀和颗粒沉积程度增加,CHF先增加后降低;0.4%硼酸(BA)、0.5%磷酸三钠(TSP)溶液和两者的混合溶液均有利于CHF的提升,但强化机理有所不同:BA会加速SA508钢表面的腐蚀并改善亲水性;TSP可降低表面张力使表面获得超亲水性;BA和TSP的混合溶液会形成一层沉积物使表面获得超亲水性。  相似文献   

11.
The Supercritical Water-cooled Reactor (SCWR) is one of the six concepts of the Generation IV International Forum. In Europe, investigations have been integrated into a joint research project, called High Performance Light Water Reactor (HPLWR). Due to the higher heat up within the core and a higher outlet temperature, a significant increase in turbine power and thermal efficiency of the plant can be expected.Besides the higher pressure and higher steam temperature, the design concept of this type of reactor differs significantly from a conventional LWR by a different core concept. In order to achieve the high outlet temperature of over 500 °C, a core with a three-step heat up and intermediate mixing is proposed to keep local cladding temperatures within today's material limits. A design for the reactor pressure vessel (RPV) and the internals has been worked out to incorporate a core arrangement with three passes. All components have been dimensioned following the safety standards of the nuclear safety standards commission in Germany. Additionally, a fuel assembly cluster with head and foot piece has been developed to facilitate the complex flow path for the multi-pass concept. The design of the internals and of the RPV is verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Furthermore, the reactor design ensures that the total coolant flow path remains closed against leakage of colder moderator water even in case of large thermal expansions of the components. The design of the RPV and internals is now available for detailed analyses of the core and the reactor.  相似文献   

12.
承压热冲击下压力容器断裂力学分析   总被引:1,自引:1,他引:0  
依据美国核管会(NRC)最新法规要求和研究进展,阐述了压水堆核电厂反应堆压力容器(RPV)承压热冲击(PTS)最新评估方法。基于热工水力系统程序RELAP5和有限元分析软件ANSYS,针对某传统二代压水堆核电厂模拟在PTS典型瞬态过程下热工响应行为及压力容器模型断裂力学分析,并评估不同瞬态的危险性及其随压力容器材料脆性的变化。分析表明:表面裂纹和靠近内壁面的埋藏裂纹比深埋裂纹更易发生开裂;同等条件下轴向裂纹较环向裂纹更易开裂,且大中破口事故下轴向裂纹远较环向裂纹更易贯穿壁厚。  相似文献   

13.
The reactor pressure vessel (RPV) is the key component of pressurized water reactor. It has to comply with various rules and regulatory guides to ensure sufficient safety and operating margins during the plant lifetime. Thus, it is crucial to assure the integrity of RPV for an effective plant lifetime management program. In this paper, the status and the experiences of various integrity issues of the highly embrittled RPV are introduced. A circumferential weld in the beltline region of the Kori Unit 1 RPV was projected to be unable to satisfy the minimum upper-shelf energy requirement and the reference temperature-pressurized thermal shock requirement before the end of 40-year design lifetime. The detailed integrity assessments had been performed to resolve both issues and the results summarized. In addition several actions have been taken as aging management programs to assure the integrity of Kori Unit 1 RPV during the extended operation. Details of the activities such as, redefining initial reference temperature-nil ductility transition temperature, installing ex-vessel dosimetry, and withdrawal and testing of additional surveillance capsule are explained. Finally, the applicability of these and other activities including thermal annealing to mitigate the effects of the irradiation embrittlement are evaluated.  相似文献   

14.
The failure of sealing system of the bolt flange connections is the primary failure mode of the nuclear reactor pressure vessel (RPV). For the safety and integrity of RPV, it is important to predict the sealing behaviour of the bolt flange connections under various loading conditions. Based on the finite element (FE) method for coupled thermal elastoplastic contact problems, a three-dimensional (3D) transient sealing analysis program of nuclear reactor pressure vessels is developed with the consideration of the non-linearity from both surface and material, transient heat transfer and multiple coupled effects. A contact correction approach is proposed to simulate the loading of the bolt connection under the condition of pre-stressing. An automatic pre-processing program is developed for FE modelling of RPVs. Using these programs, a 1:4 scaled model of a 300 MW RPV is analyzed under the loading conditions including pre-stressing, pressurization, heating and cooling. The computational results obtained are in a good agreement with the data of experimental tests. These programs are also successfully used in analyzing the full-scale model of the RPV in a nuclear power plant.  相似文献   

15.
The neutron embrittlement that occurs in the beltline of reactor pressure vessels (RPV) can be managed by various techniques such as fuel management, but only thermal annealing can reverse the effects and result in a restoration of RPV beltline material toughness. The US Nuclear Regulatory Commission has recently revised the Code of Federal Regulations to include the use of thermal annealing of RPV for recovery of material toughness. The Annealing Rule, 10 CFR Part 50.66, has an associated Regulatory Guide 1.162 that describes the format and content of a thermal anneal report that must be submitted to the NRC prior to performing an anneal. This paper will describe the thermal annealing process including regulatory requirements in 10 CFR Part 50.66, techniques for predicting and measuring the toughness recovery, and NDE requirements. Although 14 Russian-designed RPVs have been annealed, there are sufficient differences between the Russian and US designs to question the ease of thermal annealing without producing any unwanted dimensional changes in the RPV and associated piping. The paper will discuss the ongoing annealing demonstration project supported by the Department of Energy which performed a thermal anneal on a canceled pressured water reactor at Marble Hill, Indiana. The associated NRC programs also will be described. This annealing demonstration will be used to bench mark the expected thermal and stress distributions created by thermal annealing and minimize the possible dimensional changes in the RPVs. The paper also will discuss the first possible implementation of thermal annealing for a US commercial nuclear power plant and some important issues that will need to be addressed.  相似文献   

16.
承压热冲击现象在核电厂延寿评估中应被重点关注。本文针对恰希玛核电厂1号机组的压力容器及堆内构件建立了完整的CFD模型,计算了正常工况下压力容器内冷却剂的速度场和温度场分布,计算结果与试验结果符合良好。本文详细研究了蒸汽发生器传热管破裂事故工况下压力容器接管及下降段中冷却剂的热工水力特性,并将计算结果与RELAP5计算结果进行对比,结果表明二者符合良好。本文研究可为反应堆压力容器老化管理评估的计算分析工作提供重要参考。  相似文献   

17.
In the frame of the LACOMECO (large scale experiments on core degradation, melt retention and containment behavior) project of the 7th European Framework Program, a test in the DISCO (dispersion of corium) facility was performed in order to analyze the phenomena which occur during an ex-vessel fuel–coolant interaction (FCI). The test is focused on the premixing phase of the FCI with no trigger used for explosion phase. The objectives of the test were to provide data concerning the dispersion of water and melt out of the pit, characterization of the debris and pressurization of the reactor compartments for scenarios, where the melt is ejected from the reactor pressure vessel (RPV) under pressure. The experiment was performed for a reactor pit geometry close to a French 900 MWe reactor configuration at a scale of 1:10. The corium melt was simulated by a melt of iron–alumina with a temperature of 2400 K. A containment pressure increase of 0.04 MPa was measured, the total pressure reached about 0.24 MPa. No spontaneous steam explosion was observed. About 16% of the initial melt (11.62 kg) remained in the RPV vessel, 60% remained in the cavity mainly as a compact crust. The fraction of the melt transported out of the pit was about 24%.  相似文献   

18.
The approach adopted for severe accident management (SAM) at the Loviisa nuclear power plant (in Finland) is presented and discussed. The approach includes a number of significant hardware changes and procedures that allow lowering of the lower head thermal insulation and neutron shield assembly, opening of the ice condenser doors, and spraying (externally) of the steel shell of the containment. It is expected that with these changes we can assure in-vessel debris coolability and retention, gradual burning of the hydrogen with good access to the ice condenser, and long term stabilization of the containment pressure, even in the absence of the residual heat removal system. Methodological aspects of demonstrating these SAM objectives, and the status of work in support of related quantifications (of key phenomena), are included in sufficient detail to provide an integrated perspective of the approach taken. The detailed quantifications, separately on each task, will follow, as respective research and quantification programs come to completion.  相似文献   

19.
严重事故下为实现堆内熔融物滞留,可采用堆内捕集器(IVCC)的策略。捕集器属压力容器的一部分,属不可更换设备,需长期在堆内受中子辐照。本文通过对典型压水堆压力容器模型和带IVCC的压力容器模型的比较,发现IVCC不会改变压力容器内快中子通量,不会对压力容器的辐照造成影响。且IVCC使得压力容器的热中子通量明显减小,降低了压力容器的整体辐照水平。这说明IVCC对压力容器的辐照性能不会产生不利影响,反而有助于防止压力容器的老化。  相似文献   

20.
This paper presents a simple approach for estimating the structure temperatures including the uncovered reactor core inside the reactor pressure vessel (RPV) and the release rates of fission products deposited in the RPV to the reactor building (R/B) at a certain time after the occurrence of a severe accident at a nuclear power plant (NPP). First, basic concepts are presented and then, a simplified steady-state heat balance model is proposed for estimating the temperatures of the uncovered reactor core and the upper structure in the RPV as well as the temperature of the RPV wall. In addition, models for estimating the revaporization rate of cesium hydroxide (CsOH) in the RPV and the leak rate of CsOH to the R/B via the drywell are also presented. The proposed approach is anticipated to be applicable to the damaged Units 1–3 of the Fukushima Daiichi NPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号